3,994 research outputs found

    Deep Saliency with Encoded Low level Distance Map and High Level Features

    Full text link
    Recent advances in saliency detection have utilized deep learning to obtain high level features to detect salient regions in a scene. These advances have demonstrated superior results over previous works that utilize hand-crafted low level features for saliency detection. In this paper, we demonstrate that hand-crafted features can provide complementary information to enhance performance of saliency detection that utilizes only high level features. Our method utilizes both high level and low level features for saliency detection under a unified deep learning framework. The high level features are extracted using the VGG-net, and the low level features are compared with other parts of an image to form a low level distance map. The low level distance map is then encoded using a convolutional neural network(CNN) with multiple 1X1 convolutional and ReLU layers. We concatenate the encoded low level distance map and the high level features, and connect them to a fully connected neural network classifier to evaluate the saliency of a query region. Our experiments show that our method can further improve the performance of state-of-the-art deep learning-based saliency detection methods.Comment: Accepted by IEEE Conference on Computer Vision and Pattern Recognition(CVPR) 2016. Project page: https://github.com/gylee1103/SaliencyEL

    A Dilated Inception Network for Visual Saliency Prediction

    Full text link
    Recently, with the advent of deep convolutional neural networks (DCNN), the improvements in visual saliency prediction research are impressive. One possible direction to approach the next improvement is to fully characterize the multi-scale saliency-influential factors with a computationally-friendly module in DCNN architectures. In this work, we proposed an end-to-end dilated inception network (DINet) for visual saliency prediction. It captures multi-scale contextual features effectively with very limited extra parameters. Instead of utilizing parallel standard convolutions with different kernel sizes as the existing inception module, our proposed dilated inception module (DIM) uses parallel dilated convolutions with different dilation rates which can significantly reduce the computation load while enriching the diversity of receptive fields in feature maps. Moreover, the performance of our saliency model is further improved by using a set of linear normalization-based probability distribution distance metrics as loss functions. As such, we can formulate saliency prediction as a probability distribution prediction task for global saliency inference instead of a typical pixel-wise regression problem. Experimental results on several challenging saliency benchmark datasets demonstrate that our DINet with proposed loss functions can achieve state-of-the-art performance with shorter inference time.Comment: Accepted by IEEE Transactions on Multimedia. The source codes are available at https://github.com/ysyscool/DINe

    Memory-Efficient Deep Salient Object Segmentation Networks on Gridized Superpixels

    Full text link
    Computer vision algorithms with pixel-wise labeling tasks, such as semantic segmentation and salient object detection, have gone through a significant accuracy increase with the incorporation of deep learning. Deep segmentation methods slightly modify and fine-tune pre-trained networks that have hundreds of millions of parameters. In this work, we question the need to have such memory demanding networks for the specific task of salient object segmentation. To this end, we propose a way to learn a memory-efficient network from scratch by training it only on salient object detection datasets. Our method encodes images to gridized superpixels that preserve both the object boundaries and the connectivity rules of regular pixels. This representation allows us to use convolutional neural networks that operate on regular grids. By using these encoded images, we train a memory-efficient network using only 0.048\% of the number of parameters that other deep salient object detection networks have. Our method shows comparable accuracy with the state-of-the-art deep salient object detection methods and provides a faster and a much more memory-efficient alternative to them. Due to its easy deployment, such a network is preferable for applications in memory limited devices such as mobile phones and IoT devices.Comment: 6 pages, submitted to MMSP 201
    • …
    corecore