19,530 research outputs found

    Hybrid AHS: A Hybrid of Kalman Filter and Deep Learning for Acoustic Howling Suppression

    Full text link
    Deep learning has been recently introduced for efficient acoustic howling suppression (AHS). However, the recurrent nature of howling creates a mismatch between offline training and streaming inference, limiting the quality of enhanced speech. To address this limitation, we propose a hybrid method that combines a Kalman filter with a self-attentive recurrent neural network (SARNN) to leverage their respective advantages for robust AHS. During offline training, a pre-processed signal obtained from the Kalman filter and an ideal microphone signal generated via teacher-forced training strategy are used to train the deep neural network (DNN). During streaming inference, the DNN's parameters are fixed while its output serves as a reference signal for updating the Kalman filter. Evaluation in both offline and streaming inference scenarios using simulated and real-recorded data shows that the proposed method efficiently suppresses howling and consistently outperforms baselines.Comment: submitted to INTERSPEECH 2023. arXiv admin note: text overlap with arXiv:2302.0925

    DANAE: A denoising autoencoder for underwater attitude estimation

    Get PDF
    One of the main issues for underwater robots navigation is their accurate positioning, which heavily depends on the orientation estimation phase. The systems employed to this scope are affected by different noise typologies, mainly related to the sensors and to the irregular noise of the underwater environment. Filtering algorithms can reduce their effect if opportunely configured, but this process usually requires fine techniques and time. In this paper we propose DANAE, a deep Denoising AutoeNcoder for Attitude Estimation which works on Kalman filter IMU/AHRS data integration with the aim of reducing any kind of noise, independently of its nature. This deep learningbased architecture showed to be robust and reliable, significantly improving the Kalman filter results. Further tests could make this method suitable for real-time applications on navigation tasks

    Iterative Scale-Up ExpansionIoU and Deep Features Association for Multi-Object Tracking in Sports

    Full text link
    Multi-object tracking algorithms have made significant advancements due to the recent developments in object detection. However, most existing methods primarily focus on tracking pedestrians or vehicles, which exhibit relatively simple and regular motion patterns. Consequently, there is a scarcity of algorithms that address the tracking of targets with irregular or non-linear motion, such as multi-athlete tracking. Furthermore, popular tracking algorithms often rely on the Kalman filter for object motion modeling, which fails to track objects when their motion contradicts the linear motion assumption of the Kalman filter. Due to this reason, we proposed a novel online and robust multi-object tracking approach, named Iterative Scale-Up ExpansionIoU and Deep Features for multi-object tracking. Unlike conventional methods, we abandon the use of the Kalman filter and propose utilizing the iterative scale-up expansion IoU. This approach achieves superior tracking performance without requiring additional training data or adopting a more robust detector, all while maintaining a lower computational cost compared to other appearance-based methods. Our proposed method demonstrates remarkable effectiveness in tracking irregular motion objects, achieving a score of 75.3% in HOTA. It outperforms all state-of-the-art online tracking algorithms on the SportsMOT dataset, covering various kinds of sport scenarios

    Learning Pose Estimation for UAV Autonomous Navigation and Landing Using Visual-Inertial Sensor Data

    Get PDF
    In this work, we propose a robust network-in-the-loop control system for autonomous navigation and landing of an Unmanned-Aerial-Vehicle (UAV). To estimate the UAV’s absolute pose, we develop a deep neural network (DNN) architecture for visual-inertial odometry, which provides a robust alternative to traditional methods. We first evaluate the accuracy of the estimation by comparing the prediction of our model to traditional visual-inertial approaches on the publicly available EuRoC MAV dataset. The results indicate a clear improvement in the accuracy of the pose estimation up to 25% over the baseline. Finally, we integrate the data-driven estimator in the closed-loop flight control system of Airsim, a simulator available as a plugin for Unreal Engine, and we provide simulation results for autonomous navigation and landing
    • …
    corecore