19 research outputs found

    Multibeat echocardiographic phase detection using deep neural networks

    Get PDF
    Background Accurate identification of end-diastolic and end-systolic frames in echocardiographic cine loops is important, yet challenging, for human experts. Manual frame selection is subject to uncertainty, affecting crucial clinical measurements, such as myocardial strain. Therefore, the ability to automatically detect frames of interest is highly desirable. Methods We have developed deep neural networks, trained and tested on multi-centre patient data, for the accurate identification of end-diastolic and end-systolic frames in apical four-chamber 2D multibeat cine loop recordings of arbitrary length. Seven experienced cardiologist experts independently labelled the frames of interest, thereby providing infallible annotations, allowing for observer variability measurements. Results When compared with the ground-truth, our model shows an average frame difference of −0.09 ± 1.10 and 0.11 ± 1.29 frames for end-diastolic and end-systolic frames, respectively. When applied to patient datasets from a different clinical site, to which the model was blind during its development, average frame differences of −1.34 ± 3.27 and −0.31 ± 3.37 frames were obtained for both frames of interest. All detection errors fall within the range of inter-observer variability: [-0.87, −5.51]±[2.29, 4.26] and [-0.97, −3.46]±[3.67, 4.68] for ED and ES events, respectively. Conclusions The proposed automated model can identify multiple end-systolic and end-diastolic frames in echocardiographic videos of arbitrary length with performance indistinguishable from that of human experts, but with significantly shorter processing time

    Automated assessment of echocardiographic image quality using deep convolutional neural networks

    Get PDF
    Myocardial ischemia tops the list of causes of death around the globe, but its diagnosis and early detection thrives on clinical echocardiography. Although echocardiography presents a huge advantage of a non-intrusive, low-cost point of care diagnosis, its image quality is inherently subjective with strong dependence on operators’ experience level and acquisition skill. In some countries, echo specialists are mandated to supplementary years of training to achieve ‘gold standard’ free-hand acquisition skill without which exacerbates the reliability of echocardiogram and increases possibility for misdiagnosis. These drawbacks pose significant challenges to adopting echocardiography as authoritative modalities for cardiac diagnosis. However, the prevailing and currently adopted solution is to manually carry out quality evaluation where an echocardiography specialist visually inspects several acquired images to make clinical decisions of its perceived quality and prognosis. This is a lengthening process and laced with variability of opinion consequently affection diagnostic responses. The goal of the research is to provide a multi-discipline, state-of-the-art solution that allows objective quality assessment of echocardiogram and to guarantee the reliability of clinical quantification processes. Computer graphic processing unit simulations, medical imaging analysis and deep convolutional neural network models were employed to achieve this goal. From a finite pool of echocardiographic patient datasets, 1650 random samples of echocardiogram cine-loops from different patients with age ranges from 17 and 85 years, who had undergone echocardiography between 2010 and 2020 were evaluated. We defined a set of pathological and anatomical criteria of image quality by which apical-four and parasternal long axis frames can be evaluated with feasibility for real-time optimization. The selected samples were annotated for multivariate model developments and validation of predicted quality score per frame. The outcome presents a robust artificial intelligence algorithm that indicate frames’ quality rating, real-time visualisation of element of quality and updates quality optimization in real-time. A prediction errors of 0.052, 0.062, 0.069, 0.056 for visibility, clarity, depth-gain, and foreshortening attributes were achieved, respectively. The model achieved a combined error rate of 3.6% with average prediction speed of 4.24 ms per frame. The novel method established a superior approach to two-dimensional image quality estimation, assessment, and clinical adequacy on acquisition of echocardiogram prior to quantification and diagnosis of myocardial infarction

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography
    corecore