827 research outputs found

    Novel Deep Learning Models for Medical Imaging Analysis

    Get PDF
    abstract: Deep learning is a sub-field of machine learning in which models are developed to imitate the workings of the human brain in processing data and creating patterns for decision making. This dissertation is focused on developing deep learning models for medical imaging analysis of different modalities for different tasks including detection, segmentation and classification. Imaging modalities including digital mammography (DM), magnetic resonance imaging (MRI), positron emission tomography (PET) and computed tomography (CT) are studied in the dissertation for various medical applications. The first phase of the research is to develop a novel shallow-deep convolutional neural network (SD-CNN) model for improved breast cancer diagnosis. This model takes one type of medical image as input and synthesizes different modalities for additional feature sources; both original image and synthetic image are used for feature generation. This proposed architecture is validated in the application of breast cancer diagnosis and proved to be outperforming the competing models. Motivated by the success from the first phase, the second phase focuses on improving medical imaging synthesis performance with advanced deep learning architecture. A new architecture named deep residual inception encoder-decoder network (RIED-Net) is proposed. RIED-Net has the advantages of preserving pixel-level information and cross-modality feature transferring. The applicability of RIED-Net is validated in breast cancer diagnosis and Alzheimer’s disease (AD) staging. Recognizing medical imaging research often has multiples inter-related tasks, namely, detection, segmentation and classification, my third phase of the research is to develop a multi-task deep learning model. Specifically, a feature transfer enabled multi-task deep learning model (FT-MTL-Net) is proposed to transfer high-resolution features from segmentation task to low-resolution feature-based classification task. The application of FT-MTL-Net on breast cancer detection, segmentation and classification using DM images is studied. As a continuing effort on exploring the transfer learning in deep models for medical application, the last phase is to develop a deep learning model for both feature transfer and knowledge from pre-training age prediction task to new domain of Mild cognitive impairment (MCI) to AD conversion prediction task. It is validated in the application of predicting MCI patients’ conversion to AD with 3D MRI images.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    Medical Image Segmentation Review: The success of U-Net

    Full text link
    Automatic medical image segmentation is a crucial topic in the medical domain and successively a critical counterpart in the computer-aided diagnosis paradigm. U-Net is the most widespread image segmentation architecture due to its flexibility, optimized modular design, and success in all medical image modalities. Over the years, the U-Net model achieved tremendous attention from academic and industrial researchers. Several extensions of this network have been proposed to address the scale and complexity created by medical tasks. Addressing the deficiency of the naive U-Net model is the foremost step for vendors to utilize the proper U-Net variant model for their business. Having a compendium of different variants in one place makes it easier for builders to identify the relevant research. Also, for ML researchers it will help them understand the challenges of the biological tasks that challenge the model. To address this, we discuss the practical aspects of the U-Net model and suggest a taxonomy to categorize each network variant. Moreover, to measure the performance of these strategies in a clinical application, we propose fair evaluations of some unique and famous designs on well-known datasets. We provide a comprehensive implementation library with trained models for future research. In addition, for ease of future studies, we created an online list of U-Net papers with their possible official implementation. All information is gathered in https://github.com/NITR098/Awesome-U-Net repository.Comment: Submitted to the IEEE Transactions on Pattern Analysis and Machine Intelligence Journa

    Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks

    Get PDF
    Brain tumors are a pernicious cancer with one of the lowest five-year survival rates. Neurologists often use magnetic resonance imaging (MRI) to diagnose the type of brain tumor. Automated computer-assisted tools can help them speed up the diagnosis process and reduce the burden on the health care systems. Recent advances in deep learning for medical imaging have shown remarkable results, especially in the automatic and instant diagnosis of various cancers. However, we need a large amount of data (images) to train the deep learning models in order to obtain good results. Large public datasets are rare in medicine. This paper proposes a framework based on unsupervised deep generative neural networks to solve this limitation. We combine two generative models in the proposed framework: variational autoencoders (VAEs) and generative adversarial networks (GANs). We swap the encoder–decoder network after initially training it on the training set of available MR images. The output of this swapped network is a noise vector that has information of the image manifold, and the cascaded generative adversarial network samples the input from this informative noise vector instead of random Gaussian noise. The proposed method helps the GAN to avoid mode collapse and generate realistic-looking brain tumor magnetic resonance images. These artificially generated images could solve the limitation of small medical datasets up to a reasonable extent and help the deep learning models perform acceptably. We used the ResNet50 as a classifier, and the artificially generated brain tumor images are used to augment the real and available images during the classifier training. We compared the classification results with several existing studies and state-of-the-art machine learning models. Our proposed methodology noticeably achieved better results. By using brain tumor images generated artificially by our proposed method, the classification average accuracy improved from 72.63% to 96.25%. For the most severe class of brain tumor, glioma, we achieved 0.769, 0.837, 0.833, and 0.80 values for recall, specificity, precision, and F1-score, respectively. The proposed generative model framework could be used to generate medical images in any domain, including PET (positron emission tomography) and MRI scans of various parts of the body, and the results show that it could be a useful clinical tool for medical experts
    • …
    corecore