31,820 research outputs found

    Paraphrase Generation with Deep Reinforcement Learning

    Full text link
    Automatic generation of paraphrases from a given sentence is an important yet challenging task in natural language processing (NLP), and plays a key role in a number of applications such as question answering, search, and dialogue. In this paper, we present a deep reinforcement learning approach to paraphrase generation. Specifically, we propose a new framework for the task, which consists of a \textit{generator} and an \textit{evaluator}, both of which are learned from data. The generator, built as a sequence-to-sequence learning model, can produce paraphrases given a sentence. The evaluator, constructed as a deep matching model, can judge whether two sentences are paraphrases of each other. The generator is first trained by deep learning and then further fine-tuned by reinforcement learning in which the reward is given by the evaluator. For the learning of the evaluator, we propose two methods based on supervised learning and inverse reinforcement learning respectively, depending on the type of available training data. Empirical study shows that the learned evaluator can guide the generator to produce more accurate paraphrases. Experimental results demonstrate the proposed models (the generators) outperform the state-of-the-art methods in paraphrase generation in both automatic evaluation and human evaluation.Comment: EMNLP 201

    Attention-Aware Face Hallucination via Deep Reinforcement Learning

    Full text link
    Face hallucination is a domain-specific super-resolution problem with the goal to generate high-resolution (HR) faces from low-resolution (LR) input images. In contrast to existing methods that often learn a single patch-to-patch mapping from LR to HR images and are regardless of the contextual interdependency between patches, we propose a novel Attention-aware Face Hallucination (Attention-FH) framework which resorts to deep reinforcement learning for sequentially discovering attended patches and then performing the facial part enhancement by fully exploiting the global interdependency of the image. Specifically, in each time step, the recurrent policy network is proposed to dynamically specify a new attended region by incorporating what happened in the past. The state (i.e., face hallucination result for the whole image) can thus be exploited and updated by the local enhancement network on the selected region. The Attention-FH approach jointly learns the recurrent policy network and local enhancement network through maximizing the long-term reward that reflects the hallucination performance over the whole image. Therefore, our proposed Attention-FH is capable of adaptively personalizing an optimal searching path for each face image according to its own characteristic. Extensive experiments show our approach significantly surpasses the state-of-the-arts on in-the-wild faces with large pose and illumination variations

    URNet : User-Resizable Residual Networks with Conditional Gating Module

    Full text link
    Convolutional Neural Networks are widely used to process spatial scenes, but their computational cost is fixed and depends on the structure of the network used. There are methods to reduce the cost by compressing networks or varying its computational path dynamically according to the input image. However, since a user can not control the size of the learned model, it is difficult to respond dynamically if the amount of service requests suddenly increases. We propose User-Resizable Residual Networks (URNet), which allows users to adjust the scale of the network as needed during evaluation. URNet includes Conditional Gating Module (CGM) that determines the use of each residual block according to the input image and the desired scale. CGM is trained in a supervised manner using the newly proposed scale loss and its corresponding training methods. URNet can control the amount of computation according to user's demand without degrading the accuracy significantly. It can also be used as a general compression method by fixing the scale size during training. In the experiments on ImageNet, URNet based on ResNet-101 maintains the accuracy of the baseline even when resizing it to approximately 80% of the original network, and demonstrates only about 1% accuracy degradation when using about 65% of the computation.Comment: 12 page
    • …
    corecore