454 research outputs found

    UFPR-Periocular: A Periocular Dataset Collected by Mobile Devices in Unconstrained Scenarios

    Full text link
    Recently, ocular biometrics in unconstrained environments using images obtained at visible wavelength have gained the researchers' attention, especially with images captured by mobile devices. Periocular recognition has been demonstrated to be an alternative when the iris trait is not available due to occlusions or low image resolution. However, the periocular trait does not have the high uniqueness presented in the iris trait. Thus, the use of datasets containing many subjects is essential to assess biometric systems' capacity to extract discriminating information from the periocular region. Also, to address the within-class variability caused by lighting and attributes in the periocular region, it is of paramount importance to use datasets with images of the same subject captured in distinct sessions. As the datasets available in the literature do not present all these factors, in this work, we present a new periocular dataset containing samples from 1,122 subjects, acquired in 3 sessions by 196 different mobile devices. The images were captured under unconstrained environments with just a single instruction to the participants: to place their eyes on a region of interest. We also performed an extensive benchmark with several Convolutional Neural Network (CNN) architectures and models that have been employed in state-of-the-art approaches based on Multi-class Classification, Multitask Learning, Pairwise Filters Network, and Siamese Network. The results achieved in the closed- and open-world protocol, considering the identification and verification tasks, show that this area still needs research and development

    One-Shot Learning for Periocular Recognition: Exploring the Effect of Domain Adaptation and Data Bias on Deep Representations

    Full text link
    One weakness of machine-learning algorithms is the need to train the models for a new task. This presents a specific challenge for biometric recognition due to the dynamic nature of databases and, in some instances, the reliance on subject collaboration for data collection. In this paper, we investigate the behavior of deep representations in widely used CNN models under extreme data scarcity for One-Shot periocular recognition, a biometric recognition task. We analyze the outputs of CNN layers as identity-representing feature vectors. We examine the impact of Domain Adaptation on the network layers' output for unseen data and evaluate the method's robustness concerning data normalization and generalization of the best-performing layer. We improved state-of-the-art results that made use of networks trained with biometric datasets with millions of images and fine-tuned for the target periocular dataset by utilizing out-of-the-box CNNs trained for the ImageNet Recognition Challenge and standard computer vision algorithms. For example, for the Cross-Eyed dataset, we could reduce the EER by 67% and 79% (from 1.70% and 3.41% to 0.56% and 0.71%) in the Close-World and Open-World protocols, respectively, for the periocular case. We also demonstrate that traditional algorithms like SIFT can outperform CNNs in situations with limited data or scenarios where the network has not been trained with the test classes like the Open-World mode. SIFT alone was able to reduce the EER by 64% and 71.6% (from 1.7% and 3.41% to 0.6% and 0.97%) for Cross-Eyed in the Close-World and Open-World protocols, respectively, and a reduction of 4.6% (from 3.94% to 3.76%) in the PolyU database for the Open-World and single biometric case.Comment: Submitted preprint to IEE Acces

    BiOcularGAN: Bimodal Synthesis and Annotation of Ocular Images

    Full text link
    Current state-of-the-art segmentation techniques for ocular images are critically dependent on large-scale annotated datasets, which are labor-intensive to gather and often raise privacy concerns. In this paper, we present a novel framework, called BiOcularGAN, capable of generating synthetic large-scale datasets of photorealistic (visible light and near-infrared) ocular images, together with corresponding segmentation labels to address these issues. At its core, the framework relies on a novel Dual-Branch StyleGAN2 (DB-StyleGAN2) model that facilitates bimodal image generation, and a Semantic Mask Generator (SMG) component that produces semantic annotations by exploiting latent features of the DB-StyleGAN2 model. We evaluate BiOcularGAN through extensive experiments across five diverse ocular datasets and analyze the effects of bimodal data generation on image quality and the produced annotations. Our experimental results show that BiOcularGAN is able to produce high-quality matching bimodal images and annotations (with minimal manual intervention) that can be used to train highly competitive (deep) segmentation models (in a privacy aware-manner) that perform well across multiple real-world datasets. The source code for the BiOcularGAN framework is publicly available at https://github.com/dariant/BiOcularGAN.Comment: 13 pages, 14 figure

    Cross-Spectral Periocular Recognition with Conditional Adversarial Networks

    Full text link
    This work addresses the challenge of comparing periocular images captured in different spectra, which is known to produce significant drops in performance in comparison to operating in the same spectrum. We propose the use of Conditional Generative Adversarial Networks, trained to con-vert periocular images between visible and near-infrared spectra, so that biometric verification is carried out in the same spectrum. The proposed setup allows the use of existing feature methods typically optimized to operate in a single spectrum. Recognition experiments are done using a number of off-the-shelf periocular comparators based both on hand-crafted features and CNN descriptors. Using the Hong Kong Polytechnic University Cross-Spectral Iris Images Database (PolyU) as benchmark dataset, our experiments show that cross-spectral performance is substantially improved if both images are converted to the same spectrum, in comparison to matching features extracted from images in different spectra. In addition to this, we fine-tune a CNN based on the ResNet50 architecture, obtaining a cross-spectral periocular performance of EER=1%, and GAR>99% @ FAR=1%, which is comparable to the state-of-the-art with the PolyU database.Comment: Accepted for publication at 2020 International Joint Conference on Biometrics (IJCB 2020
    • …
    corecore