8,493 research outputs found

    Deep Reinforcement Learning in Parameterized Action Space

    Full text link
    Recent work has shown that deep neural networks are capable of approximating both value functions and policies in reinforcement learning domains featuring continuous state and action spaces. However, to the best of our knowledge no previous work has succeeded at using deep neural networks in structured (parameterized) continuous action spaces. To fill this gap, this paper focuses on learning within the domain of simulated RoboCup soccer, which features a small set of discrete action types, each of which is parameterized with continuous variables. The best learned agent can score goals more reliably than the 2012 RoboCup champion agent. As such, this paper represents a successful extension of deep reinforcement learning to the class of parameterized action space MDPs

    Supervised Policy Update for Deep Reinforcement Learning

    Full text link
    We propose a new sample-efficient methodology, called Supervised Policy Update (SPU), for deep reinforcement learning. Starting with data generated by the current policy, SPU formulates and solves a constrained optimization problem in the non-parameterized proximal policy space. Using supervised regression, it then converts the optimal non-parameterized policy to a parameterized policy, from which it draws new samples. The methodology is general in that it applies to both discrete and continuous action spaces, and can handle a wide variety of proximity constraints for the non-parameterized optimization problem. We show how the Natural Policy Gradient and Trust Region Policy Optimization (NPG/TRPO) problems, and the Proximal Policy Optimization (PPO) problem can be addressed by this methodology. The SPU implementation is much simpler than TRPO. In terms of sample efficiency, our extensive experiments show SPU outperforms TRPO in Mujoco simulated robotic tasks and outperforms PPO in Atari video game tasks.Comment: Accepted as a conference paper at ICLR 201

    Efficient Entropy for Policy Gradient with Multidimensional Action Space

    Full text link
    In recent years, deep reinforcement learning has been shown to be adept at solving sequential decision processes with high-dimensional state spaces such as in the Atari games. Many reinforcement learning problems, however, involve high-dimensional discrete action spaces as well as high-dimensional state spaces. This paper considers entropy bonus, which is used to encourage exploration in policy gradient. In the case of high-dimensional action spaces, calculating the entropy and its gradient requires enumerating all the actions in the action space and running forward and backpropagation for each action, which may be computationally infeasible. We develop several novel unbiased estimators for the entropy bonus and its gradient. We apply these estimators to several models for the parameterized policies, including Independent Sampling, CommNet, Autoregressive with Modified MDP, and Autoregressive with LSTM. Finally, we test our algorithms on two environments: a multi-hunter multi-rabbit grid game and a multi-agent multi-arm bandit problem. The results show that our entropy estimators substantially improve performance with marginal additional computational cost

    Hybrid Actor-Critic Reinforcement Learning in Parameterized Action Space

    Full text link
    In this paper we propose a hybrid architecture of actor-critic algorithms for reinforcement learning in parameterized action space, which consists of multiple parallel sub-actor networks to decompose the structured action space into simpler action spaces along with a critic network to guide the training of all sub-actor networks. While this paper is mainly focused on parameterized action space, the proposed architecture, which we call hybrid actor-critic, can be extended for more general action spaces which has a hierarchical structure. We present an instance of the hybrid actor-critic architecture based on proximal policy optimization (PPO), which we refer to as hybrid proximal policy optimization (H-PPO). Our experiments test H-PPO on a collection of tasks with parameterized action space, where H-PPO demonstrates superior performance over previous methods of parameterized action reinforcement learning

    Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning

    Full text link
    As a step towards developing zero-shot task generalization capabilities in reinforcement learning (RL), we introduce a new RL problem where the agent should learn to execute sequences of instructions after learning useful skills that solve subtasks. In this problem, we consider two types of generalizations: to previously unseen instructions and to longer sequences of instructions. For generalization over unseen instructions, we propose a new objective which encourages learning correspondences between similar subtasks by making analogies. For generalization over sequential instructions, we present a hierarchical architecture where a meta controller learns to use the acquired skills for executing the instructions. To deal with delayed reward, we propose a new neural architecture in the meta controller that learns when to update the subtask, which makes learning more efficient. Experimental results on a stochastic 3D domain show that the proposed ideas are crucial for generalization to longer instructions as well as unseen instructions.Comment: ICML 201

    Guide Actor-Critic for Continuous Control

    Full text link
    Actor-critic methods solve reinforcement learning problems by updating a parameterized policy known as an actor in a direction that increases an estimate of the expected return known as a critic. However, existing actor-critic methods only use values or gradients of the critic to update the policy parameter. In this paper, we propose a novel actor-critic method called the guide actor-critic (GAC). GAC firstly learns a guide actor that locally maximizes the critic and then it updates the policy parameter based on the guide actor by supervised learning. Our main theoretical contributions are two folds. First, we show that GAC updates the guide actor by performing second-order optimization in the action space where the curvature matrix is based on the Hessians of the critic. Second, we show that the deterministic policy gradient method is a special case of GAC when the Hessians are ignored. Through experiments, we show that our method is a promising reinforcement learning method for continuous controls.Comment: ICLR 201

    DSAC: Distributional Soft Actor Critic for Risk-Sensitive Reinforcement Learning

    Full text link
    In this paper, we present a new reinforcement learning (RL) algorithm called Distributional Soft Actor Critic (DSAC), which exploits the distributional information of accumulated rewards to achieve better performance. Seamlessly integrating SAC (which uses entropy to encourage exploration) with a principled distributional view of the underlying objective, DSAC takes into consideration the randomness in both action and rewards, and beats the state-of-the-art baselines in several continuous control benchmarks. Moreover, with the distributional information of rewards, we propose a unified framework for risk-sensitive learning, one that goes beyond maximizing only expected accumulated rewards. Under this framework we discuss three specific risk-related metrics: percentile, mean-variance and distorted expectation. Our extensive experiments demonstrate that with distribution modeling in RL, the agent performs better for both risk-averse and risk-seeking control tasks

    Parametrized Deep Q-Networks Learning: Reinforcement Learning with Discrete-Continuous Hybrid Action Space

    Full text link
    Most existing deep reinforcement learning (DRL) frameworks consider either discrete action space or continuous action space solely. Motivated by applications in computer games, we consider the scenario with discrete-continuous hybrid action space. To handle hybrid action space, previous works either approximate the hybrid space by discretization, or relax it into a continuous set. In this paper, we propose a parametrized deep Q-network (P- DQN) framework for the hybrid action space without approximation or relaxation. Our algorithm combines the spirits of both DQN (dealing with discrete action space) and DDPG (dealing with continuous action space) by seamlessly integrating them. Empirical results on a simulation example, scoring a goal in simulated RoboCup soccer and the solo mode in game King of Glory (KOG) validate the efficiency and effectiveness of our method

    Randomized Value Functions via Multiplicative Normalizing Flows

    Full text link
    Randomized value functions offer a promising approach towards the challenge of efficient exploration in complex environments with high dimensional state and action spaces. Unlike traditional point estimate methods, randomized value functions maintain a posterior distribution over action-space values. This prevents the agent's behavior policy from prematurely exploiting early estimates and falling into local optima. In this work, we leverage recent advances in variational Bayesian neural networks and combine these with traditional Deep Q-Networks (DQN) and Deep Deterministic Policy Gradient (DDPG) to achieve randomized value functions for high-dimensional domains. In particular, we augment DQN and DDPG with multiplicative normalizing flows in order to track a rich approximate posterior distribution over the parameters of the value function. This allows the agent to perform approximate Thompson sampling in a computationally efficient manner via stochastic gradient methods. We demonstrate the benefits of our approach through an empirical comparison in high dimensional environments

    QUOTA: The Quantile Option Architecture for Reinforcement Learning

    Full text link
    In this paper, we propose the Quantile Option Architecture (QUOTA) for exploration based on recent advances in distributional reinforcement learning (RL). In QUOTA, decision making is based on quantiles of a value distribution, not only the mean. QUOTA provides a new dimension for exploration via making use of both optimism and pessimism of a value distribution. We demonstrate the performance advantage of QUOTA in both challenging video games and physical robot simulators.Comment: AAAI 201
    corecore