6,136 research outputs found

    Constraining Implicit Space with Minimum Description Length: An Unsupervised Attention Mechanism across Neural Network Layers

    Full text link
    Inspired by the adaptation phenomenon of neuronal firing, we propose the regularity normalization (RN) as an unsupervised attention mechanism (UAM) which computes the statistical regularity in the implicit space of neural networks under the Minimum Description Length (MDL) principle. Treating the neural network optimization process as a partially observable model selection problem, UAM constrains the implicit space by a normalization factor, the universal code length. We compute this universal code incrementally across neural network layers and demonstrated the flexibility to include data priors such as top-down attention and other oracle information. Empirically, our approach outperforms existing normalization methods in tackling limited, imbalanced and non-stationary input distribution in image classification, classic control, procedurally-generated reinforcement learning, generative modeling, handwriting generation and question answering tasks with various neural network architectures. Lastly, UAM tracks dependency and critical learning stages across layers and recurrent time steps of deep networks

    Learning to Auto Weight: Entirely Data-driven and Highly Efficient Weighting Framework

    Full text link
    Example weighting algorithm is an effective solution to the training bias problem, however, most previous typical methods are usually limited to human knowledge and require laborious tuning of hyperparameters. In this paper, we propose a novel example weighting framework called Learning to Auto Weight (LAW). The proposed framework finds step-dependent weighting policies adaptively, and can be jointly trained with target networks without any assumptions or prior knowledge about the dataset. It consists of three key components: Stage-based Searching Strategy (3SM) is adopted to shrink the huge searching space in a complete training process; Duplicate Network Reward (DNR) gives more accurate supervision by removing randomness during the searching process; Full Data Update (FDU) further improves the updating efficiency. Experimental results demonstrate the superiority of weighting policy explored by LAW over standard training pipeline. Compared with baselines, LAW can find a better weighting schedule which achieves much more superior accuracy on both biased CIFAR and ImageNet.Comment: Accepted by AAAI 202
    • …
    corecore