32,858 research outputs found

    Deep Reinforcement Learning for Event-Triggered Control

    Full text link
    Event-triggered control (ETC) methods can achieve high-performance control with a significantly lower number of samples compared to usual, time-triggered methods. These frameworks are often based on a mathematical model of the system and specific designs of controller and event trigger. In this paper, we show how deep reinforcement learning (DRL) algorithms can be leveraged to simultaneously learn control and communication behavior from scratch, and present a DRL approach that is particularly suitable for ETC. To our knowledge, this is the first work to apply DRL to ETC. We validate the approach on multiple control tasks and compare it to model-based event-triggering frameworks. In particular, we demonstrate that it can, other than many model-based ETC designs, be straightforwardly applied to nonlinear systems

    Optimal Network Control in Partially-Controllable Networks

    Full text link
    The effectiveness of many optimal network control algorithms (e.g., BackPressure) relies on the premise that all of the nodes are fully controllable. However, these algorithms may yield poor performance in a partially-controllable network where a subset of nodes are uncontrollable and use some unknown policy. Such a partially-controllable model is of increasing importance in real-world networked systems such as overlay-underlay networks. In this paper, we design optimal network control algorithms that can stabilize a partially-controllable network. We first study the scenario where uncontrollable nodes use a queue-agnostic policy, and propose a low-complexity throughput-optimal algorithm, called Tracking-MaxWeight (TMW), which enhances the original MaxWeight algorithm with an explicit learning of the policy used by uncontrollable nodes. Next, we investigate the scenario where uncontrollable nodes use a queue-dependent policy and the problem is formulated as an MDP with unknown queueing dynamics. We propose a new reinforcement learning algorithm, called Truncated Upper Confidence Reinforcement Learning (TUCRL), and prove that TUCRL achieves tunable three-way tradeoffs between throughput, delay and convergence rate

    Event-triggered Pulse Control with Model Learning (if Necessary)

    Full text link
    In networked control systems, communication is a shared and therefore scarce resource. Event-triggered control (ETC) can achieve high performance control with a significantly reduced amount of samples compared to classical, periodic control schemes. However, ETC methods usually rely on the availability of an accurate dynamics model, which is oftentimes not readily available. In this paper, we propose a novel event-triggered pulse control strategy that learns dynamics models if necessary. In addition to adapting to changing dynamics, the method also represents a suitable replacement for the integral part typically used in periodic control.Comment: Accepted final version to appear in: Proc. of the American Control Conference, 201

    A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning

    Full text link
    Automatic decision-making approaches, such as reinforcement learning (RL), have been applied to (partially) solve the resource allocation problem adaptively in the cloud computing system. However, a complete cloud resource allocation framework exhibits high dimensions in state and action spaces, which prohibit the usefulness of traditional RL techniques. In addition, high power consumption has become one of the critical concerns in design and control of cloud computing systems, which degrades system reliability and increases cooling cost. An effective dynamic power management (DPM) policy should minimize power consumption while maintaining performance degradation within an acceptable level. Thus, a joint virtual machine (VM) resource allocation and power management framework is critical to the overall cloud computing system. Moreover, novel solution framework is necessary to address the even higher dimensions in state and action spaces. In this paper, we propose a novel hierarchical framework for solving the overall resource allocation and power management problem in cloud computing systems. The proposed hierarchical framework comprises a global tier for VM resource allocation to the servers and a local tier for distributed power management of local servers. The emerging deep reinforcement learning (DRL) technique, which can deal with complicated control problems with large state space, is adopted to solve the global tier problem. Furthermore, an autoencoder and a novel weight sharing structure are adopted to handle the high-dimensional state space and accelerate the convergence speed. On the other hand, the local tier of distributed server power managements comprises an LSTM based workload predictor and a model-free RL based power manager, operating in a distributed manner.Comment: accepted by 37th IEEE International Conference on Distributed Computing (ICDCS 2017
    • …
    corecore