2,725 research outputs found

    A Deep Reinforcement Learning Method for Model-based Optimal Control of HVAC Systems

    Get PDF
    Model-based optimal control (MOC) methods have strong potential to improve the energy efficiency of heating, ventilation and air conditioning (HVAC) system. However, most existing MOC methods require a low-order building model, which significantly limits the practicability of such methods. This study develops a novel model-based optimal control method for HVAC supervisory-level control based on the recently-proposed deep reinforcement learning (DRL) framework. The control method can directly use whole building energy model, a widely used flexible building modelling method, as the model and train an optimal control policy using DRL. By integrating deep learning models, the proposed control method can directly take the easily-measurable parameters, such as weather conditions and indoor environment conditions, as the input and controls the easily-controllable supervisory-level control points of HVAC systems. The proposed method is tested in an office building to control its radiant heating system. It is found that a dynamic optimal control policy can be successfully developed, and better heating energy efficiency can be achieved while maintaining the acceptable indoor thermal comfort. However, the “delayed reward problem” is found, which indicates the future work should firstly focus on the effective optimization of the deep reinforcement learning

    Modeling and Optimization of Complex Building Energy Systems with Deep Neural Networks

    Full text link
    Modern buildings encompass complex dynamics of multiple electrical, mechanical, and control systems. One of the biggest hurdles in applying conventional model-based optimization and control methods to building energy management is the huge cost and effort of capturing diverse and temporally correlated dynamics. Here we propose an alternative approach which is model-free and data-driven. By utilizing high volume of data coming from advanced sensors, we train a deep Recurrent Neural Networks (RNN) which could accurately represent the operation's temporal dynamics of building complexes. The trained network is then directly fitted into a constrained optimization problem with finite horizons. By reformulating the constrained optimization as an unconstrained optimization problem, we use iterative gradient descents method with momentum to find optimal control inputs. Simulation results demonstrate proposed method's improved performances over model-based approach on both building system modeling and control

    Learning Agent for a Heat-Pump Thermostat With a Set-Back Strategy Using Model-Free Reinforcement Learning

    Full text link
    The conventional control paradigm for a heat pump with a less efficient auxiliary heating element is to keep its temperature set point constant during the day. This constant temperature set point ensures that the heat pump operates in its more efficient heat-pump mode and minimizes the risk of activating the less efficient auxiliary heating element. As an alternative to a constant set-point strategy, this paper proposes a learning agent for a thermostat with a set-back strategy. This set-back strategy relaxes the set-point temperature during convenient moments, e.g. when the occupants are not at home. Finding an optimal set-back strategy requires solving a sequential decision-making process under uncertainty, which presents two challenges. A first challenge is that for most residential buildings a description of the thermal characteristics of the building is unavailable and challenging to obtain. A second challenge is that the relevant information on the state, i.e. the building envelope, cannot be measured by the learning agent. In order to overcome these two challenges, our paper proposes an auto-encoder coupled with a batch reinforcement learning technique. The proposed approach is validated for two building types with different thermal characteristics for heating in the winter and cooling in the summer. The simulation results indicate that the proposed learning agent can reduce the energy consumption by 4-9% during 100 winter days and by 9-11% during 80 summer days compared to the conventional constant set-point strategyComment: Submitted to Energies - MDPI.co
    • …
    corecore