704 research outputs found

    AI-Human Collaboration Via EEG

    Get PDF
    As AI becomes ever more competent and integrated into our lives, the issue of AI-human goal misalignment looms larger. This is partially because there is often a rift between what humans explicitly command and what they actually mean. Most contemporary AI systems cannot bridge this gap. In this study we attempted to reconcile the goals of human and machine by using EEG signals from a human to help a simulated agent complete a task

    Single neuron computations of cognition in the human brain

    Full text link
    Understanding how information is encoded, processed, and decoded to produce behavior is a fundamental goal of neuroscience. In this dissertation, we aim to expand our understanding of our human decision-making processes at the single-neuronal level. We describe three studies exploring the neural substrate of decision-making in three separate brain regions. First, we describe a method for recording the activity of individual neurons in human subjects. The unique combination of behavioral and neurophysiological data will allow us to better understand the neural substrate of cognitive functions in humans. Second, we explored how decisions are represented in the brain. We recorded single neuronal responses in the human nucleus accumbens while subjects engaged in a financial decision-making task. We found that neurons in the nucleus accumbens predicted upcoming decisions well before the behavior was manifested. In addition, these neurons encoded a positive and negative prediction error signal, signaling the difference between expected and realized outcome. Third, we explored how the brain represents decision conflict and how it adapts to prime future decisions allowing tradeoff between speed and accuracy. We found that individual neurons in the human dorsal anterior cingulate cortex encode the level of decision conflict in a dose-dependent manner. In addition, these neurons encode historical conflict information, priming the neural circuit to future trials of the same or varying conflict levels. Following selective ablation of the dorsal anterior cingulate cortex, we found this signal was selectively abolished. Lastly, we explored how the brain represents decisions under conflict and if these decisions are malleable to external intervention. We found that neurons in the human subthalamic nucleus are selectively activated and encode the upcoming decision during situations of high decision conflict. Based on the physiological findings, we then applied intermittent stimulation through the implanted deep brain stimulation electrode during the same task, to demonstrate a causal interaction between the physiology and behavior. In conclusion, we describe a set of experiments that systematically explore human decision-making processes at the single-neuronal level

    Neurophysiological correlates underlying social behavioural adjustment of conformity

    Get PDF
    [eng] Conformity is the act of changing one’s behaviour to adjust to other human beings. It is a crucial social adaptation that happens when people cooperate, where one sacrifices their own perception, expectations, or beliefs to reach convergence with another person. The aim of the present study was to increase the understanding of the neurophysiological underpinnings regarding the social behavioural adjustment of conformity. We start by introducing cooperation and how it is ingrained in human behaviour. Then we explore the different processes that the brain requires for the social behavioural adjustment of conformity. To engage in this social adaptation, a person needs a self-referenced learning mechanism based on a predictive model that helps them track the prediction errors from unexpected events. Also, the brain uses its monitoring and control systems to encode different value functions used in action selection. The use of different learning models in neuroscience, such as reinforcement learning (RL) algorithms, has been a success story identifying learning systems by means of the mapped activity of different regions in the brain. Importantly, experimental paradigms which has been used to study conformity have not been based in a social interaction setting and, hence, the results, cannot be used to explain an inherently social phenomenon. The main goal of the present thesis is to study the neurophysiological mechanisms underlying the social behavioural adjustment of conformity and its modulation with repeated interaction. To reach this goal, we have first designed a new experimental task where conformity appears spontaneously between two persons and in a reiterative way. This design exposes learning acquisition processes, which require iterative loops, as well as other cognitive control mechanisms such as feedback processing, value-based decision making and attention. The first study shows that people who previously cooperate increase their level of convergence and report a significantly more satisfying overall experience. In addition, participants learning on their counterparts’ behaviour can be explained using a RL algorithm as opposed to when they do not have previously cooperated. In the second study, we have studied the event-related potentials (ERP) and oscillatory power underlying conformity. ERP results show different levels of cognitive engagement that are associated to distinct levels of conformity. Also, time-frequency analysis shows evidence in theta, alpha and beta related to different functions such as cognitive control, attention and, also, reward processing, supporting the idea that convergence between dyads acts as a social reward. Finally, in the third study, we explored the intra- and inter- oscillatory connectivity between electrodes related to behavioural convergence. In intra-brain oscillatory connectivity coherence, we have found two different dynamics related to attention and executive functions in alpha. Also, we have found that the learning about peer’s behaviour as computed using a RL is mediated by theta oscillatory connectivity. Consequently, combined evidence from Study 2 and Study 3 suggests that both cognitive control and learning computations happening in the social behavioural adaptation of conformity are signalled in theta frequency band. The present work is one of the first studies describing, with credible evidence, that conformity, when this occurs willingly and spontaneously rather than induced, engages different brain activity underlying reward-guided learning, cognitive control, and attention.[spa] La conformidad es el acto de cambiar el comportamiento de uno a favor de ajustarnos a otros seres humanos. Se trata de una adaptación crucial que ocurre cuando la gente coopera, donde uno sacrifica su propia percepción, expectativas o creencias en aras de conseguir una convergencia con la otra persona. El objetivo del presente estudio ha sido tratar de aportar a la comprensión de las estructuras neurofisiológicas que soportan un ajuste social como el de la conformidad. En la primera parte de esta tesis comenzamos hablando de la cooperación y lo profundamente arraigada que está en nuestro comportamiento. Más tarde exploramos diferentes procesos que el cerebro requiere en el ajuste social de la conformidad. Así pues, para involucrarse en esta adaptación social, una persona requiere de un mecanismo de aprendizaje auto-referenciado basado en un modelo predictivo que le ayude a seguir el rastro de los errores de predicción que acompañan a los eventos inesperados. Además, el cerebro usa sus sistemas de control y predicción para codificar diferentes funciones de valor usadas en la selección de acción. El uso de diferentes modelos de aprendizaje en neurociencia, como los algoritmos de aprendizaje por refuerzo (RL), han sido una historia de éxito a la hora de identificar los sistemas de aprendizaje a través del mapeo de la actividad de diferentes regiones del cerebro. Es importante destacar que los paradigmas experimentales que se han usado para estudiar la conformidad no se han basado en entornos de interacción social y que, por lo tanto, sus resultados no pueden usarse para explicar un fenómeno inherentemente social. El objetivo principal de la presente tesis es el estudio de los mecanismos neurofisiológicos que fundamentan el comportamiento de ajuste social de la conformidad y su modulación con la interacción repetida. Para alcanzar este objetivo, primero hemos diseñado una nueva tarea experimental en la que la conformidad aparece de forma espontánea entre dos personas y, además, de forma reiterativa. Este diseño permite exponer tanto los procesos de adquisición del aprendizaje, que requieren de ciclos iterativos, así como otros mecanismos de control cognitivo tales como el procesamiento de la retroalimentación, las tomas de decisiones basadas en procesos valorativos y la atención. El primer estudio nos muestra que la gente que coopera previamente incrementa sus niveles de convergencia y reportan significativamente una experiencia generalmente más satisfactoria en el experimento. Adicionalmente, un modelo de RL nos explica que los participantes tratan de aprender del comportamiento de sus parejas en mayor medida si estos han cooperado previamente. En el segundo estudio, hemos estudiado los potenciales relacionados con eventos (ERP) y el poder de las oscilaciones que sustentan la conformidad. Los estudios de ERP muestran diferentes niveles de implicación cognitiva asociados con diferentes niveles de conformidad. Además, los análisis de tiempo-frecuencia muestran evidencia en theta, alfa y beta relacionados con diferentes funciones como el control cognitivo, la atención, y, también, el procesamiento de la recompensa, apoyando la idea de que la convergencia entre díadas actúa como una recompensa social. Finalmente, en el tercer estudio, exploramos la conectividad oscilatoria intra e inter entre electrodos que se pudieran relacionar con la conducta de convergencia. A propósito de la conectividad oscilatoria coherente intra, hemos hallado dos dinámicas relacionadas con la atención y las funciones ejecutivas en alfa. Asimismo, hemos encontrado que el aprendizaje de la conducta de la pareja computada a través de RL está mediada a través de la conectividad oscilatoria de theta. Consecuentemente, la evidencia combinada entre el estudio 2 y el estudio 3 sugiere que conjuntamente el control cognitivo y las computaciones de aprendizaje que ocurren en la conducta de adaptación social de la conformidad están relacionadas con la actividad de la banda de frecuencia theta. Este trabajo constituye uno de los primeros estudios que describen, con evidencia creíble, que la conformidad, cuando ocurre voluntaria y espontáneamente a diferencia cuando esta es inducida, involucra actividad del cerebro que se fundamenta en el aprendizaje guiado por reforzamiento, el control cognitivo y la atención

    Two is better than one: The effects of strategic cooperation on intra- and inter-brain connectivity by fNIRS

    Get PDF
    Inter-brain synchronization during joint actions is a core question in social neuroscience, and the differential contribution of intra- and inter-brain functional connectivity has yet to be clarified along with the role of psychological variables such as perceived self-efficacy. The cognitive performance and the neural activation underlying the execution of joint actions were recorded by functional Near-Infrared imaging during a synchronicity game. An 8-channel array of optodes was positioned over the frontal and prefrontal regions. During the task, the dyads received reinforcing feedback that was experimentally manipulated to induce adoption of common strategies. Intra- and inter-brain connectivity indices were computed along with an inter-brain/intra-brain connectivity index (ConIndex). Finally, correlation analyses were run to assess the relationship between behavioral and physiological levels. The results showed that the external feedback could modulate participant responses in both behavioral and neural components. After the reinforcing manipulation, there were faster response times and increased inter-brain connectivity, and ConIndex emerged primarily over the dorsolateral prefrontal cortex. Additionally, the presence of significant correlations between response times and inter-brain connectivity revealed that only the \ue2\u80\u9ctwo-players connection\ue2\u80\u9d may guarantee an efficient performance. The present study provides a significant contribution to the identification of intra- and inter-brain functional connectivity when social reinforcement is provided

    Predictive cognition in dementia: the case of music

    Get PDF
    The clinical complexity and pathological diversity of neurodegenerative diseases impose immense challenges for diagnosis and the design of rational interventions. To address these challenges, there is a need to identify new paradigms and biomarkers that capture shared pathophysiological processes and can be applied across a range of diseases. One core paradigm of brain function is predictive coding: the processes by which the brain establishes predictions and uses them to minimise prediction errors represented as the difference between predictions and actual sensory inputs. The processes involved in processing unexpected events and responding appropriately are vulnerable in common dementias but difficult to characterise. In my PhD work, I have exploited key properties of music – its universality, ecological relevance and structural regularity – to model and assess predictive cognition in patients representing major syndromes of frontotemporal dementia – non-fluent variant PPA (nfvPPA), semantic-variant PPA (svPPA) and behavioural-variant FTD (bvFTD) - and Alzheimer’s disease relative to healthy older individuals. In my first experiment, I presented patients with well-known melodies containing no deviants or one of three types of deviant - acoustic (white-noise burst), syntactic (key-violating pitch change) or semantic (key-preserving pitch change). I assessed accuracy detecting melodic deviants and simultaneously-recorded pupillary responses to these deviants. I used voxel-based morphometry to define neuroanatomical substrates for the behavioural and autonomic processing of these different types of deviants, and identified a posterior temporo-parietal network for detection of basic acoustic deviants and a more anterior fronto-temporo-striatal network for detection of syntactic pitch deviants. In my second chapter, I investigated the ability of patients to track the statistical structure of the same musical stimuli, using a computational model of the information dynamics of music to calculate the information-content of deviants (unexpectedness) and entropy of melodies (uncertainty). I related these information-theoretic metrics to performance for detection of deviants and to ‘evoked’ and ‘integrative’ pupil reactivity to deviants and melodies respectively and found neuroanatomical correlates in bilateral dorsal and ventral striatum, hippocampus, superior temporal gyri, right temporal pole and left inferior frontal gyrus. Together, chapters 3 and 4 revealed new hypotheses about the way FTD and AD pathologies disrupt the integration of predictive errors with predictions: a retained ability of AD patients to detect deviants at all levels of the hierarchy with a preserved autonomic sensitivity to information-theoretic properties of musical stimuli; a generalized impairment of surprise detection and statistical tracking of musical information at both a cognitive and autonomic levels for svPPA patients underlying a diminished precision of predictions; the exact mirror profile of svPPA patients in nfvPPA patients with an abnormally high rate of false-alarms with up-regulated pupillary reactivity to deviants, interpreted as over-precise or inflexible predictions accompanied with normal cognitive and autonomic probabilistic tracking of information; an impaired behavioural and autonomic reactivity to unexpected events with a retained reactivity to environmental uncertainty in bvFTD patients. Chapters 5 and 6 assessed the status of reward prediction error processing and updating via actions in bvFTD. I created pleasant and aversive musical stimuli by manipulating chord progressions and used a classic reinforcement-learning paradigm which asked participants to choose the visual cue with the highest probability of obtaining a musical ‘reward’. bvFTD patients showed reduced sensitivity to the consequence of an action and lower learning rate in response to aversive stimuli compared to reward. These results correlated with neuroanatomical substrates in ventral and dorsal attention networks, dorsal striatum, parahippocampal gyrus and temporo-parietal junction. Deficits were governed by the level of environmental uncertainty with normal learning dynamics in a structured and binarized environment but exacerbated deficits in noisier environments. Impaired choice accuracy in noisy environments correlated with measures of ritualistic and compulsive behavioural changes and abnormally reduced learning dynamics correlated with behavioural changes related to empathy and theory-of-mind. Together, these experiments represent the most comprehensive attempt to date to define the way neurodegenerative pathologies disrupts the perceptual, behavioural and physiological encoding of unexpected events in predictive coding terms

    Revealing the (predictive) code of top-down signals in the brain

    Get PDF
    Reciprocal connections are common in the brain, yet little is known about their functional role. Top-down connections, in particular, remain functionally obscure in both neuroscience and in the nascent field of deep learning. On the theoretical side, predictive coding has been put forward as a framework that assigns specific roles to top-down and bottom-up connections in sensory information processing. It remains unclear, however, if and how the brain implements this predictive code. This work examined top-down signals in the auditory cortex and in the corticostriatal system in macaques in order to validate the claims put forward by predictive coding. This theory suggests there are imbalances in message passing up and down the cortical hierarchy; these imbalances imply cross-frequency couplings should predominate top-down. It is unknown whether these asymmetries are expressed in cross-frequency interactions in the brain. This work examined cross-frequency interactions across four sectors of the macaque auditory cortex. Predictive coding also applies in decision making, where it allows for action selection based on predicted reward (or value). This is more commonly known as reinforcement learning (RL) and is supported by the fronto-striatal systems in the brain. The computational mechanisms that drive learning in this system are unknown, however. This work drew on a recurrent neural network (RNN) model of the dlPFC-dSTR circuit in the brain together with recordings from macaques from the same regions to answer this question. Altogether, the findings are largely consistent with the predictive coding framework.Open Acces

    Computational neuroimaging strategies for single patient predictions

    Get PDF
    AbstractNeuroimaging increasingly exploits machine learning techniques in an attempt to achieve clinically relevant single-subject predictions. An alternative to machine learning, which tries to establish predictive links between features of the observed data and clinical variables, is the deployment of computational models for inferring on the (patho)physiological and cognitive mechanisms that generate behavioural and neuroimaging responses. This paper discusses the rationale behind a computational approach to neuroimaging-based single-subject inference, focusing on its potential for characterising disease mechanisms in individual subjects and mapping these characterisations to clinical predictions. Following an overview of two main approaches – Bayesian model selection and generative embedding – which can link computational models to individual predictions, we review how these methods accommodate heterogeneity in psychiatric and neurological spectrum disorders, help avoid erroneous interpretations of neuroimaging data, and establish a link between a mechanistic, model-based approach and the statistical perspectives afforded by machine learning
    • …
    corecore