70 research outputs found

    Self-Supervised and Controlled Multi-Document Opinion Summarization

    Full text link
    We address the problem of unsupervised abstractive summarization of collections of user generated reviews with self-supervision and control. We propose a self-supervised setup that considers an individual document as a target summary for a set of similar documents. This setting makes training simpler than previous approaches by relying only on standard log-likelihood loss. We address the problem of hallucinations through the use of control codes, to steer the generation towards more coherent and relevant summaries.Finally, we extend the Transformer architecture to allow for multiple reviews as input. Our benchmarks on two datasets against graph-based and recent neural abstractive unsupervised models show that our proposed method generates summaries with a superior quality and relevance.This is confirmed in our human evaluation which focuses explicitly on the faithfulness of generated summaries We also provide an ablation study, which shows the importance of the control setup in controlling hallucinations and achieve high sentiment and topic alignment of the summaries with the input reviews.Comment: 18 pages including 5 pages appendi

    Deep Learning for Text Style Transfer: A Survey

    Full text link
    Text style transfer is an important task in natural language generation, which aims to control certain attributes in the generated text, such as politeness, emotion, humor, and many others. It has a long history in the field of natural language processing, and recently has re-gained significant attention thanks to the promising performance brought by deep neural models. In this paper, we present a systematic survey of the research on neural text style transfer, spanning over 100 representative articles since the first neural text style transfer work in 2017. We discuss the task formulation, existing datasets and subtasks, evaluation, as well as the rich methodologies in the presence of parallel and non-parallel data. We also provide discussions on a variety of important topics regarding the future development of this task. Our curated paper list is at https://github.com/zhijing-jin/Text_Style_Transfer_SurveyComment: Computational Linguistics Journal 202

    A Survey of Zero-shot Generalisation in Deep Reinforcement Learning

    Get PDF
    The study of zero-shot generalisation (ZSG) in deep Reinforcement Learning (RL) aims to produce RL algorithms whose policies generalise well to novel unseen situations at deployment time, avoiding overfitting to their training environments. Tackling this is vital if we are to deploy reinforcement learning algorithms in real world scenarios, where the environment will be diverse, dynamic and unpredictable. This survey is an overview of this nascent field. We rely on a unifying formalism and terminology for discussing different ZSG problems, building upon previous works. We go on to categorise existing benchmarks for ZSG, as well as current methods for tackling these problems. Finally, we provide a critical discussion of the current state of the field, including recommendations for future work. Among other conclusions, we argue that taking a purely procedural content generation approach to benchmark design is not conducive to progress in ZSG, we suggest fast online adaptation and tackling RL-specific problems as some areas for future work on methods for ZSG, and we recommend building benchmarks in underexplored problem settings such as offline RL ZSG and reward-function variation

    Notions of explainability and evaluation approaches for explainable artificial intelligence

    Get PDF
    Explainable Artificial Intelligence (XAI) has experienced a significant growth over the last few years. This is due to the widespread application of machine learning, particularly deep learning, that has led to the development of highly accurate models that lack explainability and interpretability. A plethora of methods to tackle this problem have been proposed, developed and tested, coupled with several studies attempting to define the concept of explainability and its evaluation. This systematic review contributes to the body of knowledge by clustering all the scientific studies via a hierarchical system that classifies theories and notions related to the concept of explainability and the evaluation approaches for XAI methods. The structure of this hierarchy builds on top of an exhaustive analysis of existing taxonomies and peer-reviewed scientific material. Findings suggest that scholars have identified numerous notions and requirements that an explanation should meet in order to be easily understandable by end-users and to provide actionable information that can inform decision making. They have also suggested various approaches to assess to what degree machine-generated explanations meet these demands. Overall, these approaches can be clustered into human-centred evaluations and evaluations with more objective metrics. However, despite the vast body of knowledge developed around the concept of explainability, there is not a general consensus among scholars on how an explanation should be defined, and how its validity and reliability assessed. Eventually, this review concludes by critically discussing these gaps and limitations, and it defines future research directions with explainability as the starting component of any artificial intelligent system

    Error propagation

    Get PDF

    The Road to General Intelligence

    Get PDF
    Humans have always dreamed of automating laborious physical and intellectual tasks, but the latter has proved more elusive than naively suspected. Seven decades of systematic study of Artificial Intelligence have witnessed cycles of hubris and despair. The successful realization of General Intelligence (evidenced by the kind of cross-domain flexibility enjoyed by humans) will spawn an industry worth billions and transform the range of viable automation tasks.The recent notable successes of Machine Learning has lead to conjecture that it might be the appropriate technology for delivering General Intelligence. In this book, we argue that the framework of machine learning is fundamentally at odds with any reasonable notion of intelligence and that essential insights from previous decades of AI research are being forgotten. We claim that a fundamental change in perspective is required, mirroring that which took place in the philosophy of science in the mid 20th century. We propose a framework for General Intelligence, together with a reference architecture that emphasizes the need for anytime bounded rationality and a situated denotational semantics. We given necessary emphasis to compositional reasoning, with the required compositionality being provided via principled symbolic-numeric inference mechanisms based on universal constructions from category theory. • Details the pragmatic requirements for real-world General Intelligence. • Describes how machine learning fails to meet these requirements. • Provides a philosophical basis for the proposed approach. • Provides mathematical detail for a reference architecture. • Describes a research program intended to address issues of concern in contemporary AI. The book includes an extensive bibliography, with ~400 entries covering the history of AI and many related areas of computer science and mathematics.The target audience is the entire gamut of Artificial Intelligence/Machine Learning researchers and industrial practitioners. There are a mixture of descriptive and rigorous sections, according to the nature of the topic. Undergraduate mathematics is in general sufficient. Familiarity with category theory is advantageous for a complete understanding of the more advanced sections, but these may be skipped by the reader who desires an overall picture of the essential concepts This is an open access book

    Text Summarization Across High and Low-Resource Settings

    Get PDF
    Natural language processing aims to build automated systems that can both understand and generate natural language textual data. As the amount of textual data available online has increased exponentially, so has the need for intelligence systems to comprehend and present it to the world. As a result, automatic text summarization, the process by which a text\u27s salient content is automatically distilled into a concise form, has become a necessary tool. Automatic text summarization approaches and applications vary based on the input summarized, which may constitute single or multiple documents of different genres. Furthermore, the desired output style may consist of a sentence or sub-sentential units chosen directly from the input in extractive summarization or a fusion and paraphrase of the input document in abstractive summarization. Despite differences in the above use-cases, specific themes, such as the role of large-scale data for training these models, the application of summarization models in real-world scenarios, and the need for adequately evaluating and comparing summaries, are common across these settings. This dissertation presents novel data and modeling techniques for deep neural network-based summarization models trained across high-resource (thousands of supervised training examples) and low-resource (zero to hundreds of supervised training examples) data settings and a comprehensive evaluation of the model and metric progress in the field. We examine both Recurrent Neural Network (RNN)-based and Transformer-based models to extract and generate summaries from the input. To facilitate the training of large-scale networks, we introduce datasets applicable for multi-document summarization (MDS) for pedagogical applications and for news summarization. While the high-resource settings allow models to advance state-of-the-art performance, the failure of such models to adapt to settings outside of that in which it was initially trained requires smarter use of labeled data and motivates work in low-resource summarization. To this end, we propose unsupervised learning techniques for both extractive summarization in question answering, abstractive summarization on distantly-supervised data for summarization of community question answering forums, and abstractive zero and few-shot summarization across several domains. To measure the progress made along these axes, we revisit the evaluation of current summarization models. In particular, this dissertation addresses the following research objectives: 1) High-resource Summarization. We introduce datasets for multi-document summarization, focusing on pedagogical applications for NLP, news summarization, and Wikipedia topic summarization. Large-scale datasets allow models to achieve state-of-the-art performance on these tasks compared to prior modeling techniques, and we introduce a novel model to reduce redundancy. However, we also examine how models trained on these large-scale datasets fare when applied to new settings, showing the need for more generalizable models. 2) Low-resource Summarization. While high-resource summarization improves model performance, for practical applications, data-efficient models are necessary. We propose a pipeline for creating synthetic training data for training extractive question-answering models, a form of query-based extractive summarization with short-phrase summaries. In other work, we propose an automatic pipeline for training a multi-document summarizer in answer summarization on community question-answering forums without labeled data. Finally, we push the boundaries of abstractive summarization model performance when little or no training data is available across several domains. 3) Automatic Summarization Evaluation. To understand the extent of progress made across recent modeling techniques and better understand the current evaluation protocols, we examine the current metrics used to compare summarization output quality across 12 metrics across 23 deep neural network models and propose better-motivated summarization evaluation guidelines as well as point to open problems in summarization evaluation

    Extracting personal information from conversations

    Get PDF
    Personal knowledge is a versatile resource that is valuable for a wide range of downstream applications. Background facts about users can allow chatbot assistants to produce more topical and empathic replies. In the context of recommendation and retrieval models, personal facts can be used to customize the ranking results for individual users. A Personal Knowledge Base, populated with personal facts, such as demographic information, interests and interpersonal relationships, is a unique endpoint for storing and querying personal knowledge. Such knowledge bases are easily interpretable and can provide users with full control over their own personal knowledge, including revising stored facts and managing access by downstream services for personalization purposes. To alleviate users from extensive manual effort to build such personal knowledge base, we can leverage automated extraction methods applied to the textual content of the users, such as dialogue transcripts or social media posts. Mainstream extraction methods specialize on well-structured data, such as biographical texts or encyclopedic articles, which are rare for most people. In turn, conversational data is abundant but challenging to process and requires specialized methods for extraction of personal facts. In this dissertation we address the acquisition of personal knowledge from conversational data. We propose several novel deep learning models for inferring speakers’ personal attributes: • Demographic attributes, age, gender, profession and family status, are inferred by HAMs - hierarchical neural classifiers with attention mechanism. Trained HAMs can be transferred between different types of conversational data and provide interpretable predictions. • Long-tailed personal attributes, hobby and profession, are predicted with CHARM - a zero-shot learning model, overcoming the lack of labeled training samples for rare attribute values. By linking conversational utterances to external sources, CHARM is able to predict attribute values which it never saw during training. • Interpersonal relationships are inferred with PRIDE - a hierarchical transformer-based model. To accurately predict fine-grained relationships, PRIDE leverages personal traits of the speakers and the style of conversational utterances. Experiments with various conversational texts, including Reddit discussions and movie scripts, demonstrate the viability of our methods and their superior performance compared to state-of-the-art baselines.Personengebundene Fakten sind eine vielseitig nutzbare Quelle für die verschiedensten Anwendungen. Hintergrundfakten über Nutzer können es Chatbot-Assistenten ermöglichen, relevantere und persönlichere Antworten zu geben. Im Kontext von Empfehlungs- und Retrievalmodellen können personengebundene Fakten dazu verwendet werden, die Ranking-Ergebnisse für Nutzer individuell anzupassen. Eine Personengebundene Wissensdatenbank, gefüllt mit persönlichen Daten wie demografischen Angaben, Interessen und Beziehungen, kann eine universelle Schnittstelle für die Speicherung und Abfrage solcher Fakten sein. Wissensdatenbanken sind leicht zu interpretieren und bieten dem Nutzer die vollständige Kontrolle über seine personenbezogenen Fakten, einschließlich der Überarbeitung und der Verwaltung des Zugriffs durch nachgelagerte Dienste, etwa für Personalisierungszwecke. Um den Nutzern den aufwändigen manuellen Aufbau einer solchen persönlichen Wissensdatenbank zu ersparen, können automatisierte Extraktionsmethoden auf den textuellen Inhalten der Nutzer – wie z.B. Konversationen oder Beiträge in sozialen Medien – angewendet werden. Die üblichen Extraktionsmethoden sind auf strukturierte Daten wie biografische Texte oder enzyklopädische Artikel spezialisiert, die bei den meisten Menschen keine Rolle spielen. In dieser Dissertation beschäftigen wir uns mit der Gewinnung von persönlichem Wissen aus Dialogdaten und schlagen mehrere neuartige Deep-Learning-Modelle zur Ableitung persönlicher Attribute von Sprechern vor: • Demographische Attribute wie Alter, Geschlecht, Beruf und Familienstand werden durch HAMs - Hierarchische Neuronale Klassifikatoren mit Attention-Mechanismus - abgeleitet. Trainierte HAMs können zwischen verschiedenen Arten von Gesprächsdaten übertragen werden und liefern interpretierbare Vorhersagen • Vielseitige persönliche Attribute wie Hobbys oder Beruf werden mit CHARM ermittelt - einem Zero-Shot-Lernmodell, das den Mangel an markierten Trainingsbeispielen für seltene Attributwerte überwindet. Durch die Verknüpfung von Gesprächsäußerungen mit externen Quellen ist CHARM in der Lage, Attributwerte zu ermitteln, die es beim Training nie gesehen hat • Zwischenmenschliche Beziehungen werden mit PRIDE, einem hierarchischen transformerbasierten Modell, abgeleitet. Um präzise Beziehungen vorhersagen zu können, nutzt PRIDE persönliche Eigenschaften der Sprecher und den Stil von Konversationsäußerungen Experimente mit verschiedenen Konversationstexten, inklusive Reddit-Diskussionen und Filmskripten, demonstrieren die Praxistauglichkeit unserer Methoden und ihre hervorragende Leistung im Vergleich zum aktuellen Stand der Technik
    • …
    corecore