3,748 research outputs found

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Distributed Cognitive RAT Selection in 5G Heterogeneous Networks: A Machine Learning Approach

    Get PDF
    The leading role of the HetNet (Heterogeneous Networks) strategy as the key Radio Access Network (RAN) architecture for future 5G networks poses serious challenges to the current cell selection mechanisms used in cellular networks. The max-SINR algorithm, although effective historically for performing the most essential networking function of wireless networks, is inefficient at best and obsolete at worst in 5G HetNets. The foreseen embarrassment of riches and diversified propagation characteristics of network attachment points spanning multiple Radio Access Technologies (RAT) requires novel and creative context-aware system designs. The association and routing decisions, in the context of single-RAT or multi-RAT connections, need to be optimized to efficiently exploit the benefits of the architecture. However, the high computational complexity required for multi-parametric optimization of utility functions, the difficulty of modeling and solving Markov Decision Processes, the lack of guarantees of stability of Game Theory algorithms, and the rigidness of simpler methods like Cell Range Expansion and operator policies managed by the Access Network Discovery and Selection Function (ANDSF), makes neither of these state-of-the-art approaches a favorite. This Thesis proposes a framework that relies on Machine Learning techniques at the terminal device-level for Cognitive RAT Selection. The use of cognition allows the terminal device to learn both a multi-parametric state model and effective decision policies, based on the experience of the device itself. This implies that a terminal, after observing its environment during a learning period, may formulate a system characterization and optimize its own association decisions without any external intervention. In our proposal, this is achieved through clustering of appropriately defined feature vectors for building a system state model, supervised classification to obtain the current system state, and reinforcement learning for learning good policies. This Thesis describes the above framework in detail and recommends adaptations based on the experimentation with the X-means, k-Nearest Neighbors, and Q-learning algorithms, the building blocks of the solution. The network performance of the proposed framework is evaluated in a multi-agent environment implemented in MATLAB where it is compared with alternative RAT selection mechanisms

    Recent Advances in Machine Learning for Network Automation in the O-RAN

    Get PDF
    © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation using ML in O-RAN. We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support for ML techniques. The survey then explores challenges in network automation using ML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects where ML techniques can benefit.Peer reviewe
    • …
    corecore