133,273 research outputs found

    Novel deep learning methods for track reconstruction

    Full text link
    For the past year, the HEP.TrkX project has been investigating machine learning solutions to LHC particle track reconstruction problems. A variety of models were studied that drew inspiration from computer vision applications and operated on an image-like representation of tracking detector data. While these approaches have shown some promise, image-based methods face challenges in scaling up to realistic HL-LHC data due to high dimensionality and sparsity. In contrast, models that can operate on the spacepoint representation of track measurements ("hits") can exploit the structure of the data to solve tasks efficiently. In this paper we will show two sets of new deep learning models for reconstructing tracks using space-point data arranged as sequences or connected graphs. In the first set of models, Recurrent Neural Networks (RNNs) are used to extrapolate, build, and evaluate track candidates akin to Kalman Filter algorithms. Such models can express their own uncertainty when trained with an appropriate likelihood loss function. The second set of models use Graph Neural Networks (GNNs) for the tasks of hit classification and segment classification. These models read a graph of connected hits and compute features on the nodes and edges. They adaptively learn which hit connections are important and which are spurious. The models are scaleable with simple architecture and relatively few parameters. Results for all models will be presented on ACTS generic detector simulated data.Comment: CTD 2018 proceeding

    Generative Model with Coordinate Metric Learning for Object Recognition Based on 3D Models

    Full text link
    Given large amount of real photos for training, Convolutional neural network shows excellent performance on object recognition tasks. However, the process of collecting data is so tedious and the background are also limited which makes it hard to establish a perfect database. In this paper, our generative model trained with synthetic images rendered from 3D models reduces the workload of data collection and limitation of conditions. Our structure is composed of two sub-networks: semantic foreground object reconstruction network based on Bayesian inference and classification network based on multi-triplet cost function for avoiding over-fitting problem on monotone surface and fully utilizing pose information by establishing sphere-like distribution of descriptors in each category which is helpful for recognition on regular photos according to poses, lighting condition, background and category information of rendered images. Firstly, our conjugate structure called generative model with metric learning utilizing additional foreground object channels generated from Bayesian rendering as the joint of two sub-networks. Multi-triplet cost function based on poses for object recognition are used for metric learning which makes it possible training a category classifier purely based on synthetic data. Secondly, we design a coordinate training strategy with the help of adaptive noises acting as corruption on input images to help both sub-networks benefit from each other and avoid inharmonious parameter tuning due to different convergence speed of two sub-networks. Our structure achieves the state of the art accuracy of over 50\% on ShapeNet database with data migration obstacle from synthetic images to real photos. This pipeline makes it applicable to do recognition on real images only based on 3D models.Comment: 14 page

    C2AE: Class Conditioned Auto-Encoder for Open-set Recognition

    Full text link
    Models trained for classification often assume that all testing classes are known while training. As a result, when presented with an unknown class during testing, such closed-set assumption forces the model to classify it as one of the known classes. However, in a real world scenario, classification models are likely to encounter such examples. Hence, identifying those examples as unknown becomes critical to model performance. A potential solution to overcome this problem lies in a class of learning problems known as open-set recognition. It refers to the problem of identifying the unknown classes during testing, while maintaining performance on the known classes. In this paper, we propose an open-set recognition algorithm using class conditioned auto-encoders with novel training and testing methodology. In contrast to previous methods, training procedure is divided in two sub-tasks, 1. closed-set classification and, 2. open-set identification (i.e. identifying a class as known or unknown). Encoder learns the first task following the closed-set classification training pipeline, whereas decoder learns the second task by reconstructing conditioned on class identity. Furthermore, we model reconstruction errors using the Extreme Value Theory of statistical modeling to find the threshold for identifying known/unknown class samples. Experiments performed on multiple image classification datasets show proposed method performs significantly better than state of the art.Comment: CVPR2019 (Oral

    Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps

    Full text link
    This paper addresses the visualisation of image classification models, learnt using deep Convolutional Networks (ConvNets). We consider two visualisation techniques, based on computing the gradient of the class score with respect to the input image. The first one generates an image, which maximises the class score [Erhan et al., 2009], thus visualising the notion of the class, captured by a ConvNet. The second technique computes a class saliency map, specific to a given image and class. We show that such maps can be employed for weakly supervised object segmentation using classification ConvNets. Finally, we establish the connection between the gradient-based ConvNet visualisation methods and deconvolutional networks [Zeiler et al., 2013]
    • …
    corecore