177 research outputs found

    A survey on data integration for multi-omics sample clustering

    Get PDF
    Due to the current high availability of omics, data-driven biology has greatly expanded, and several papers have reviewed state-of-the-art technologies. Nowadays, two main types of investigation are available for a multi-omics dataset: extraction of relevant features for a meaningful biological interpretation and clustering of the samples. In the latter case, a few reviews refer to some outdated or no longer available methods, whereas others lack the description of relevant clustering metrics to compare the main approaches. This work provides a general overview of the major techniques in this area, divided into four groups: graph, dimensionality reduction, statistical and neural-based. Besides, eight tools have been tested both on a synthetic and a real biological dataset. An extensive performance comparison has been provided using four clustering evaluation scores: Peak Signal-to-Noise Ratio (PSNR), Davies-Bouldin(DB) index, Silhouette value and the harmonic mean of cluster purity and efficiency. The best results were obtained by using the dimensionality reduction, either explicitly or implicitly, as in the neural architecture

    DeepReGraph co-clusters temporal gene expression and cis-regulatory elements through heterogeneous graph representation learning

    Get PDF
    This work presents DeepReGraph, a novel method for co-clustering genes and cis-regulatory elements (CREs) into candidate regulatory networks. Gene expression data, as well as data from three CRE activity markers from a publicly available dataset of mouse fetal heart tissue, were used for DeepReGraph concept proofing. In this study we used open chromatin accessibility from ATAC-seq experiments, as well as H3K27ac and H3K27me3 histone marks as CREs activity markers. However, this method can be executed with other sets of markers. We modelled all data sources as a heterogeneous graph and adapted a state-of-the-art representation learning algorithm to produce a low-dimensional and easy-to-cluster embedding of genes and CREs. Deep graph auto-encoders and an adaptive-sparsity generative model are the algorithmic core of DeepReGraph. The main contribution of our work is the design of proper combination rules for the heterogeneous gene expression and CRE activity data and the computational encoding of well-known gene expression regulatory mechanisms into a suitable objective function for graph embedding. We showed that the co-clusters of genes and CREs in the final embedding shed light on developmental regulatory mechanisms in mouse fetal-heart tissue. Such clustering could not be achieved by using only gene expression data. Function enrichment analysis proves that the genes in the co-clusters are involved in distinct biological processes. The enriched transcription factor binding sites in CREs prioritize the candidate transcript factors which drive the temporal changes in gene expression. Consequently, we conclude that DeepReGraph could foster hypothesis-driven tissue development research from high-throughput expression and epigenomic data. Full source code and data are available on the DeepReGraph GitHub project

    Joint and individual analysis of breast cancer histologic images and genomic covariates

    Get PDF
    A key challenge in modern data analysis is understanding connections between complex and differing modalities of data. For example, two of the main approaches to the study of breast cancer are histopathology (analyzing visual characteristics of tumors) and genetics. While histopathology is the gold standard for diagnostics and there have been many recent breakthroughs in genetics, there is little overlap between these two fields. We aim to bridge this gap by developing methods based on Angle-based Joint and Individual Variation Explained (AJIVE) to directly explore similarities and differences between these two modalities. Our approach exploits Convolutional Neural Networks (CNNs) as a powerful, automatic method for image feature extraction to address some of the challenges presented by statistical analysis of histopathology image data. CNNs raise issues of interpretability that we address by developing novel methods to explore visual modes of variation captured by statistical algorithms (e.g. PCA or AJIVE) applied to CNN features. Our results provide many interpretable connections and contrasts between histopathology and genetics

    Pacific Symposium on Biocomputing 2023

    Get PDF
    The Pacific Symposium on Biocomputing (PSB) 2023 is an international, multidisciplinary conference for the presentation and discussion of current research in the theory and application of computational methods in problems of biological significance. Presentations are rigorously peer reviewed and are published in an archival proceedings volume. PSB 2023 will be held on January 3-7, 2023 in Kohala Coast, Hawaii. Tutorials and workshops will be offered prior to the start of the conference.PSB 2023 will bring together top researchers from the US, the Asian Pacific nations, and around the world to exchange research results and address open issues in all aspects of computational biology. It is a forum for the presentation of work in databases, algorithms, interfaces, visualization, modeling, and other computational methods, as applied to biological problems, with emphasis on applications in data-rich areas of molecular biology.The PSB has been designed to be responsive to the need for critical mass in sub-disciplines within biocomputing. For that reason, it is the only meeting whose sessions are defined dynamically each year in response to specific proposals. PSB sessions are organized by leaders of research in biocomputing's 'hot topics.' In this way, the meeting provides an early forum for serious examination of emerging methods and approaches in this rapidly changing field

    Data-Driven Modeling For Decision Support Systems And Treatment Management In Personalized Healthcare

    Get PDF
    Massive amount of electronic medical records (EMRs) accumulating from patients and populations motivates clinicians and data scientists to collaborate for the advanced analytics to create knowledge that is essential to address the extensive personalized insights needed for patients, clinicians, providers, scientists, and health policy makers. Learning from large and complicated data is using extensively in marketing and commercial enterprises to generate personalized recommendations. Recently the medical research community focuses to take the benefits of big data analytic approaches and moves to personalized (precision) medicine. So, it is a significant period in healthcare and medicine for transferring to a new paradigm. There is a noticeable opportunity to implement a learning health care system and data-driven healthcare to make better medical decisions, better personalized predictions; and more precise discovering of risk factors and their interactions. In this research we focus on data-driven approaches for personalized medicine. We propose a research framework which emphasizes on three main phases: 1) Predictive modeling, 2) Patient subgroup analysis and 3) Treatment recommendation. Our goal is to develop novel methods for each phase and apply them in real-world applications. In the fist phase, we develop a new predictive approach based on feature representation using deep feature learning and word embedding techniques. Our method uses different deep architectures (Stacked autoencoders, Deep belief network and Variational autoencoders) for feature representation in higher-level abstractions to obtain effective and more robust features from EMRs, and then build prediction models on the top of them. Our approach is particularly useful when the unlabeled data is abundant whereas labeled one is scarce. We investigate the performance of representation learning through a supervised approach. We perform our method on different small and large datasets. Finally we provide a comparative study and show that our predictive approach leads to better results in comparison with others. In the second phase, we propose a novel patient subgroup detection method, called Supervised Biclustring (SUBIC) using convex optimization and apply our approach to detect patient subgroups and prioritize risk factors for hypertension (HTN) in a vulnerable demographic subgroup (African-American). Our approach not only finds patient subgroups with guidance of a clinically relevant target variable but also identifies and prioritizes risk factors by pursuing sparsity of the input variables and encouraging similarity among the input variables and between the input and target variables. Finally, in the third phase, we introduce a new survival analysis framework using deep learning and active learning with a novel sampling strategy. First, our approach provides better representation with lower dimensions from clinical features using labeled (time-to-event) and unlabeled (censored) instances and then actively trains the survival model by labeling the censored data using an oracle. As a clinical assistive tool, we propose a simple yet effective treatment recommendation approach based on our survival model. In the experimental study, we apply our approach on SEER-Medicare data related to prostate cancer among African-Americans and white patients. The results indicate that our approach outperforms significantly than baseline models
    • …
    corecore