1,481 research outputs found

    A plug-and-play synthetic data deep learning for undersampled magnetic resonance image reconstruction

    Full text link
    Magnetic resonance imaging (MRI) plays an important role in modern medical diagnostic but suffers from prolonged scan time. Current deep learning methods for undersampled MRI reconstruction exhibit good performance in image de-aliasing which can be tailored to the specific kspace undersampling scenario. But it is very troublesome to configure different deep networks when the sampling setting changes. In this work, we propose a deep plug-and-play method for undersampled MRI reconstruction, which effectively adapts to different sampling settings. Specifically, the image de-aliasing prior is first learned by a deep denoiser trained to remove general white Gaussian noise from synthetic data. Then the learned deep denoiser is plugged into an iterative algorithm for image reconstruction. Results on in vivo data demonstrate that the proposed method provides nice and robust accelerated image reconstruction performance under different undersampling patterns and sampling rates, both visually and quantitatively.Comment: 5 pages, 3 figure

    A Review of Image Super Resolution using Deep Learning

    Get PDF
    The image processing methods collectively known as super-resolution have proven useful in creating high-quality images from a group of low-resolution photographic images. Single image super resolution (SISR) has been applied in a variety of fields. The paper offers an in-depth analysis of a few current picture super resolution works created in various domains. In order to comprehend the most current developments in the development of Image super resolution systems, these recent publications have been examined with particular emphasis paid to the domain for which these systems have been designed, image enhancement used or not, among other factors. To improve the accuracy of the image super resolution, a different deep learning techniques might be explored. In fact, greater research into the image super resolution in medical imaging is possible to improve the data's suitability for future analysis. In light of this, it can be said that there is a lot of scope for research in the field of medical imaging
    • …
    corecore