20 research outputs found

    The HdpH DSLs for scalable reliable computation

    Get PDF
    The statelessness of functional computations facilitates both parallelism and fault recovery. Faults and non-uniform communication topologies are key challenges for emergent large scale parallel architectures. We report on HdpH and HdpH-RS, a pair of Haskell DSLs designed to address these challenges for irregular task-parallel computations on large distributed-memory architectures. Both DSLs share an API combining explicit task placement with sophisticated work stealing. HdpH focuses on scalability by making placement and stealing topology aware whereas HdpH-RS delivers reliability by means of fault tolerant work stealing. We present operational semantics for both DSLs and investigate conditions for semantic equivalence of HdpH and HdpH-RS programs, that is, conditions under which topology awareness can be transparently traded for fault tolerance. We detail how the DSL implementations realise topology awareness and fault tolerance. We report an initial evaluation of scalability and fault tolerance on a 256-core cluster and on up to 32K cores of an HPC platform

    Model-Based Performance Prediction for Concurrent Software on Multicore Architectures

    Get PDF
    Model-based performance prediction is a well-known concept to ensure the quality of software.Current approaches are based on a single-metric model, which leads to inaccurate predictions for modern architectures. This thesis presents a multi-strategies approach to extend performance prediction models to support multicore architectures.We implemented the strategies into Palladio and significantly increased the performance prediction power

    Genetic Programming + Proof Search = Automatic Improvement

    Get PDF
    Search Based Software Engineering techniques are emerging as important tools for software maintenance. Foremost among these is Genetic Improvement, which has historically applied the stochastic techniques of Genetic Programming to optimize pre-existing program code. Previous work in this area has not generally preserved program semantics and this article describes an alternative to the traditional mutation operators used, employing deterministic proof search in the sequent calculus to yield semantics-preserving transformations on algebraic data types. Two case studies are described, both of which are applicable to the recently-introduced `grow and graft' technique of Genetic Improvement: the first extends the expressiveness of the `grafting' phase and the second transforms the representation of a list data type to yield an asymptotic efficiency improvement

    Actor-based Concurrency in Newspeak 4

    Get PDF
    Actors are a model of computation invented by Carl Hewitt in the 1970s. It has seen a resurrection of mainstream use recently as a potential solution to the latency and concurrency that are quickly rising as the dominant challenges facing the software industry. In this project I explored the history of the actor model and a practical implementation of actor-based concurrency tightly integrated with non-blocking futures in the E programming language developed by Mark Miller. I implemented an actor-based concurrency framework for Newspeak that closely follows the E implementation and includes E-style futures and deep integration into the programming language via new syntax for asynchronous message passing

    System Abstractions for Scalable Application Development at the Edge

    Get PDF
    Recent years have witnessed an explosive growth of Internet of Things (IoT) devices, which collect or generate huge amounts of data. Given diverse device capabilities and application requirements, data processing takes place across a range of settings, from on-device to a nearby edge server/cloud and remote cloud. Consequently, edge-cloud coordination has been studied extensively from the perspectives of job placement, scheduling and joint optimization. Typical approaches focus on performance optimization for individual applications. This often requires domain knowledge of the applications, but also leads to application-specific solutions. Application development and deployment over diverse scenarios thus incur repetitive manual efforts. There are two overarching challenges to provide system-level support for application development at the edge. First, there is inherent heterogeneity at the device hardware level. The execution settings may range from a small cluster as an edge cloud to on-device inference on embedded devices, differing in hardware capability and programming environments. Further, application performance requirements vary significantly, making it even more difficult to map different applications to already heterogeneous hardware. Second, there are trends towards incorporating edge and cloud and multi-modal data. Together, these add further dimensions to the design space and increase the complexity significantly. In this thesis, we propose a novel framework to simplify application development and deployment over a continuum of edge to cloud. Our framework provides key connections between different dimensions of design considerations, corresponding to the application abstraction, data abstraction and resource management abstraction respectively. First, our framework masks hardware heterogeneity with abstract resource types through containerization, and abstracts away the application processing pipelines into generic flow graphs. Further, our framework further supports a notion of degradable computing for application scenarios at the edge that are driven by multimodal sensory input. Next, as video analytics is the killer app of edge computing, we include a generic data management service between video query systems and a video store to organize video data at the edge. We propose a video data unit abstraction based on a notion of distance between objects in the video, quantifying the semantic similarity among video data. Last, considering concurrent application execution, our framework supports multi-application offloading with device-centric control, with a userspace scheduler service that wraps over the operating system scheduler

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing

    Genetic Improvement of Software: From Program Landscapes to the Automatic Improvement of a Live System

    Get PDF
    In today’s technology driven society, software is becoming increasingly important in more areas of our lives. The domain of software extends beyond the obvious domain of computers, tablets, and mobile phones. Smart devices and the internet-of-things have inspired the integra- tion of digital and computational technology into objects that some of us would never have guessed could be possible or even necessary. Fridges and freezers connected to social media sites, a toaster activated with a mobile phone, physical buttons for shopping, and verbally asking smart speakers to order a meal to be delivered. This is the world we live in and it is an exciting time for software engineers and computer scientists. The sheer volume of code that is currently in use has long since outgrown beyond the point of any hope for proper manual maintenance. The rate of which mobile application stores such as Google’s and Apple’s have expanded is astounding. The research presented here aims to shed a light on an emerging field of research, called Genetic Improvement ( GI ) of software. It is a methodology to change program code to improve existing software. This thesis details a framework for GI that is then applied to explore fitness landscape of bug fixing Python software, reduce execution time in a C ++ program, and integrated into a live system. We show that software is generally not fragile and although fitness landscapes for GI are flat they are not impossible to search in. This conclusion applies equally to bug fixing in small programs as well as execution time improvements. The framework’s application is shown to be transportable between programming languages with minimal effort. Additionally, it can be easily integrated into a system that runs a live web service. The work within this thesis was funded by EPSRC grant EP/J017515/1 through the DAASE project

    Improving the Performance of User-level Runtime Systems for Concurrent Applications

    Get PDF
    Concurrency is an essential part of many modern large-scale software systems. Applications must handle millions of simultaneous requests from millions of connected devices. Handling such a large number of concurrent requests requires runtime systems that efficiently man- age concurrency and communication among tasks in an application across multiple cores. Existing low-level programming techniques provide scalable solutions with low overhead, but require non-linear control flow. Alternative approaches to concurrent programming, such as Erlang and Go, support linear control flow by mapping multiple user-level execution entities across multiple kernel threads (M:N threading). However, these systems provide comprehensive execution environments that make it difficult to assess the performance impact of user-level runtimes in isolation. This thesis presents a nimble M:N user-level threading runtime that closes this con- ceptual gap and provides a software infrastructure to precisely study the performance impact of user-level threading. Multiple design alternatives are presented and evaluated for scheduling, I/O multiplexing, and synchronization components of the runtime. The performance of the runtime is evaluated in comparison to event-driven software, system- level threading, and other user-level threading runtimes. An experimental evaluation is conducted using benchmark programs, as well as the popular Memcached application. The user-level runtime supports high levels of concurrency without sacrificing application performance. In addition, the user-level scheduling problem is studied in the context of an existing actor runtime that maps multiple actors to multiple kernel-level threads. In particular, two locality-aware work-stealing schedulers are proposed and evaluated. It is shown that locality-aware scheduling can significantly improve the performance of a class of applications with a high level of concurrency. In general, the performance and resource utilization of large-scale concurrent applications depends on the level of concurrency that can be expressed by the programming model. This fundamental effect is studied by refining and customizing existing concurrency models
    corecore