92,451 research outputs found

    Deep Non-Rigid Structure from Motion

    Full text link
    Current non-rigid structure from motion (NRSfM) algorithms are mainly limited with respect to: (i) the number of images, and (ii) the type of shape variability they can handle. This has hampered the practical utility of NRSfM for many applications within vision. In this paper we propose a novel deep neural network to recover camera poses and 3D points solely from an ensemble of 2D image coordinates. The proposed neural network is mathematically interpretable as a multi-layer block sparse dictionary learning problem, and can handle problems of unprecedented scale and shape complexity. Extensive experiments demonstrate the impressive performance of our approach where we exhibit superior precision and robustness against all available state-of-the-art works in the order of magnitude. We further propose a quality measure (based on the network weights) which circumvents the need for 3D ground-truth to ascertain the confidence we have in the reconstruction.Comment: Oral Paper in ICCV 2019. arXiv admin note: substantial text overlap with arXiv:1902.10840, arXiv:1907.1312

    Procrustean Regression Networks: Learning 3D Structure of Non-Rigid Objects from 2D Annotations

    Full text link
    We propose a novel framework for training neural networks which is capable of learning 3D information of non-rigid objects when only 2D annotations are available as ground truths. Recently, there have been some approaches that incorporate the problem setting of non-rigid structure-from-motion (NRSfM) into deep learning to learn 3D structure reconstruction. The most important difficulty of NRSfM is to estimate both the rotation and deformation at the same time, and previous works handle this by regressing both of them. In this paper, we resolve this difficulty by proposing a loss function wherein the suitable rotation is automatically determined. Trained with the cost function consisting of the reprojection error and the low-rank term of aligned shapes, the network learns the 3D structures of such objects as human skeletons and faces during the training, whereas the testing is done in a single-frame basis. The proposed method can handle inputs with missing entries and experimental results validate that the proposed framework shows superior reconstruction performance to the state-of-the-art method on the Human 3.6M, 300-VW, and SURREAL datasets, even though the underlying network structure is very simple.Comment: ECCV 202

    Deep NRSfM++: Towards Unsupervised 2D-3D Lifting in the Wild

    Full text link
    The recovery of 3D shape and pose from 2D landmarks stemming from a large ensemble of images can be viewed as a non-rigid structure from motion (NRSfM) problem. Classical NRSfM approaches, however, are problematic as they rely on heuristic priors on the 3D structure (e.g. low rank) that do not scale well to large datasets. Learning-based methods are showing the potential to reconstruct a much broader set of 3D structures than classical methods -- dramatically expanding the importance of NRSfM to atemporal unsupervised 2D to 3D lifting. Hitherto, these learning approaches have not been able to effectively model perspective cameras or handle missing/occluded points -- limiting their applicability to in-the-wild datasets. In this paper, we present a generalized strategy for improving learning-based NRSfM methods to tackle the above issues. Our approach, Deep NRSfM++, achieves state-of-the-art performance across numerous large-scale benchmarks, outperforming both classical and learning-based 2D-3D lifting methods

    GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose

    Full text link
    We propose GeoNet, a jointly unsupervised learning framework for monocular depth, optical flow and ego-motion estimation from videos. The three components are coupled by the nature of 3D scene geometry, jointly learned by our framework in an end-to-end manner. Specifically, geometric relationships are extracted over the predictions of individual modules and then combined as an image reconstruction loss, reasoning about static and dynamic scene parts separately. Furthermore, we propose an adaptive geometric consistency loss to increase robustness towards outliers and non-Lambertian regions, which resolves occlusions and texture ambiguities effectively. Experimentation on the KITTI driving dataset reveals that our scheme achieves state-of-the-art results in all of the three tasks, performing better than previously unsupervised methods and comparably with supervised ones.Comment: Accepted to CVPR 2018; Code will be made available at https://github.com/yzcjtr/GeoNe

    HDM-Net: Monocular Non-Rigid 3D Reconstruction with Learned Deformation Model

    Full text link
    Monocular dense 3D reconstruction of deformable objects is a hard ill-posed problem in computer vision. Current techniques either require dense correspondences and rely on motion and deformation cues, or assume a highly accurate reconstruction (referred to as a template) of at least a single frame given in advance and operate in the manner of non-rigid tracking. Accurate computation of dense point tracks often requires multiple frames and might be computationally expensive. Availability of a template is a very strong prior which restricts system operation to a pre-defined environment and scenarios. In this work, we propose a new hybrid approach for monocular non-rigid reconstruction which we call Hybrid Deformation Model Network (HDM-Net). In our approach, deformation model is learned by a deep neural network, with a combination of domain-specific loss functions. We train the network with multiple states of a non-rigidly deforming structure with a known shape at rest. HDM-Net learns different reconstruction cues including texture-dependent surface deformations, shading and contours. We show generalisability of HDM-Net to states not presented in the training dataset, with unseen textures and under new illumination conditions. Experiments with noisy data and a comparison with other methods demonstrate robustness and accuracy of the proposed approach and suggest possible application scenarios of the new technique in interventional diagnostics and augmented reality.Comment: 9 pages, 9 figure

    Every Pixel Counts ++: Joint Learning of Geometry and Motion with 3D Holistic Understanding

    Full text link
    Learning to estimate 3D geometry in a single frame and optical flow from consecutive frames by watching unlabeled videos via deep convolutional network has made significant progress recently. Current state-of-the-art (SoTA) methods treat the two tasks independently. One typical assumption of the existing depth estimation methods is that the scenes contain no independent moving objects. while object moving could be easily modeled using optical flow. In this paper, we propose to address the two tasks as a whole, i.e. to jointly understand per-pixel 3D geometry and motion. This eliminates the need of static scene assumption and enforces the inherent geometrical consistency during the learning process, yielding significantly improved results for both tasks. We call our method as "Every Pixel Counts++" or "EPC++". Specifically, during training, given two consecutive frames from a video, we adopt three parallel networks to predict the camera motion (MotionNet), dense depth map (DepthNet), and per-pixel optical flow between two frames (OptFlowNet) respectively. The three types of information are fed into a holistic 3D motion parser (HMP), and per-pixel 3D motion of both rigid background and moving objects are disentangled and recovered. Comprehensive experiments were conducted on datasets with different scenes, including driving scenario (KITTI 2012 and KITTI 2015 datasets), mixed outdoor/indoor scenes (Make3D) and synthetic animation (MPI Sintel dataset). Performance on the five tasks of depth estimation, optical flow estimation, odometry, moving object segmentation and scene flow estimation shows that our approach outperforms other SoTA methods. Code will be available at: https://github.com/chenxuluo/EPC.Comment: Chenxu Luo, Zhenheng Yang, and Peng Wang contributed equally, TPAMI submissio

    Deep Part Induction from Articulated Object Pairs

    Full text link
    Object functionality is often expressed through part articulation -- as when the two rigid parts of a scissor pivot against each other to perform the cutting function. Such articulations are often similar across objects within the same functional category. In this paper, we explore how the observation of different articulation states provides evidence for part structure and motion of 3D objects. Our method takes as input a pair of unsegmented shapes representing two different articulation states of two functionally related objects, and induces their common parts along with their underlying rigid motion. This is a challenging setting, as we assume no prior shape structure, no prior shape category information, no consistent shape orientation, the articulation states may belong to objects of different geometry, plus we allow inputs to be noisy and partial scans, or point clouds lifted from RGB images. Our method learns a neural network architecture with three modules that respectively propose correspondences, estimate 3D deformation flows, and perform segmentation. To achieve optimal performance, our architecture alternates between correspondence, deformation flow, and segmentation prediction iteratively in an ICP-like fashion. Our results demonstrate that our method significantly outperforms state-of-the-art techniques in the task of discovering articulated parts of objects. In addition, our part induction is object-class agnostic and successfully generalizes to new and unseen objects

    Web Stereo Video Supervision for Depth Prediction from Dynamic Scenes

    Full text link
    We present a fully data-driven method to compute depth from diverse monocular video sequences that contain large amounts of non-rigid objects, e.g., people. In order to learn reconstruction cues for non-rigid scenes, we introduce a new dataset consisting of stereo videos scraped in-the-wild. This dataset has a wide variety of scene types, and features large amounts of nonrigid objects, especially people. From this, we compute disparity maps to be used as supervision to train our approach. We propose a loss function that allows us to generate a depth prediction even with unknown camera intrinsics and stereo baselines in the dataset. We validate the use of large amounts of Internet video by evaluating our method on existing video datasets with depth supervision, including SINTEL, and KITTI, and show that our approach generalizes better to natural scenes

    DF-Net: Unsupervised Joint Learning of Depth and Flow using Cross-Task Consistency

    Full text link
    We present an unsupervised learning framework for simultaneously training single-view depth prediction and optical flow estimation models using unlabeled video sequences. Existing unsupervised methods often exploit brightness constancy and spatial smoothness priors to train depth or flow models. In this paper, we propose to leverage geometric consistency as additional supervisory signals. Our core idea is that for rigid regions we can use the predicted scene depth and camera motion to synthesize 2D optical flow by backprojecting the induced 3D scene flow. The discrepancy between the rigid flow (from depth prediction and camera motion) and the estimated flow (from optical flow model) allows us to impose a cross-task consistency loss. While all the networks are jointly optimized during training, they can be applied independently at test time. Extensive experiments demonstrate that our depth and flow models compare favorably with state-of-the-art unsupervised methods.Comment: ECCV 2018. Project website: http://yuliang.vision/DF-Net/ Code: https://github.com/vt-vl-lab/DF-Ne

    Rigid-Motion Scattering for Texture Classification

    Full text link
    A rigid-motion scattering computes adaptive invariants along translations and rotations, with a deep convolutional network. Convolutions are calculated on the rigid-motion group, with wavelets defined on the translation and rotation variables. It preserves joint rotation and translation information, while providing global invariants at any desired scale. Texture classification is studied, through the characterization of stationary processes from a single realization. State-of-the-art results are obtained on multiple texture data bases, with important rotation and scaling variabilities.Comment: 19 pages, submitted to International Journal of Computer Visio
    • …
    corecore