383 research outputs found

    Deep Neuroevolution of Recurrent and Discrete World Models

    Get PDF
    Neural architectures inspired by our own human cognitive system, such as the recently introduced world models, have been shown to outperform traditional deep reinforcement learning (RL) methods in a variety of different domains. Instead of the relatively simple architectures employed in most RL experiments, world models rely on multiple different neural components that are responsible for visual information processing, memory, and decision-making. However, so far the components of these models have to be trained separately and through a variety of specialized training methods. This paper demonstrates the surprising finding that models with the same precise parts can be instead efficiently trained end-to-end through a genetic algorithm (GA), reaching a comparable performance to the original world model by solving a challenging car racing task. An analysis of the evolved visual and memory system indicates that they include a similar effective representation to the system trained through gradient descent. Additionally, in contrast to gradient descent methods that struggle with discrete variables, GAs also work directly with such representations, opening up opportunities for classical planning in latent space. This paper adds additional evidence on the effectiveness of deep neuroevolution for tasks that require the intricate orchestration of multiple components in complex heterogeneous architectures

    Safe Mutations for Deep and Recurrent Neural Networks through Output Gradients

    Full text link
    While neuroevolution (evolving neural networks) has a successful track record across a variety of domains from reinforcement learning to artificial life, it is rarely applied to large, deep neural networks. A central reason is that while random mutation generally works in low dimensions, a random perturbation of thousands or millions of weights is likely to break existing functionality, providing no learning signal even if some individual weight changes were beneficial. This paper proposes a solution by introducing a family of safe mutation (SM) operators that aim within the mutation operator itself to find a degree of change that does not alter network behavior too much, but still facilitates exploration. Importantly, these SM operators do not require any additional interactions with the environment. The most effective SM variant capitalizes on the intriguing opportunity to scale the degree of mutation of each individual weight according to the sensitivity of the network's outputs to that weight, which requires computing the gradient of outputs with respect to the weights (instead of the gradient of error, as in conventional deep learning). This safe mutation through gradients (SM-G) operator dramatically increases the ability of a simple genetic algorithm-based neuroevolution method to find solutions in high-dimensional domains that require deep and/or recurrent neural networks (which tend to be particularly brittle to mutation), including domains that require processing raw pixels. By improving our ability to evolve deep neural networks, this new safer approach to mutation expands the scope of domains amenable to neuroevolution

    Evolino for recurrent support vector machines

    Full text link
    Traditional Support Vector Machines (SVMs) need pre-wired finite time windows to predict and classify time series. They do not have an internal state necessary to deal with sequences involving arbitrary long-term dependencies. Here we introduce a new class of recurrent, truly sequential SVM-like devices with internal adaptive states, trained by a novel method called EVOlution of systems with KErnel-based outputs (Evoke), an instance of the recent Evolino class of methods. Evoke evolves recurrent neural networks to detect and represent temporal dependencies while using quadratic programming/support vector regression to produce precise outputs. Evoke is the first SVM-based mechanism learning to classify a context-sensitive language. It also outperforms recent state-of-the-art gradient-based recurrent neural networks (RNNs) on various time series prediction tasks.Comment: 10 pages, 2 figure

    Neuroevolution of Self-Interpretable Agents

    Full text link
    Inattentional blindness is the psychological phenomenon that causes one to miss things in plain sight. It is a consequence of the selective attention in perception that lets us remain focused on important parts of our world without distraction from irrelevant details. Motivated by selective attention, we study the properties of artificial agents that perceive the world through the lens of a self-attention bottleneck. By constraining access to only a small fraction of the visual input, we show that their policies are directly interpretable in pixel space. We find neuroevolution ideal for training self-attention architectures for vision-based reinforcement learning (RL) tasks, allowing us to incorporate modules that can include discrete, non-differentiable operations which are useful for our agent. We argue that self-attention has similar properties as indirect encoding, in the sense that large implicit weight matrices are generated from a small number of key-query parameters, thus enabling our agent to solve challenging vision based tasks with at least 1000x fewer parameters than existing methods. Since our agent attends to only task critical visual hints, they are able to generalize to environments where task irrelevant elements are modified while conventional methods fail. Videos of our results and source code available at https://attentionagent.github.io/Comment: To appear at the Genetic and Evolutionary Computation Conference (GECCO 2020) as a full pape

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards
    corecore