30,178 research outputs found

    Decentralization of Multiagent Policies by Learning What to Communicate

    Full text link
    Effective communication is required for teams of robots to solve sophisticated collaborative tasks. In practice it is typical for both the encoding and semantics of communication to be manually defined by an expert; this is true regardless of whether the behaviors themselves are bespoke, optimization based, or learned. We present an agent architecture and training methodology using neural networks to learn task-oriented communication semantics based on the example of a communication-unaware expert policy. A perimeter defense game illustrates the system's ability to handle dynamically changing numbers of agents and its graceful degradation in performance as communication constraints are tightened or the expert's observability assumptions are broken.Comment: 7 page

    Applying Deep Machine Learning for psycho-demographic profiling of Internet users using O.C.E.A.N. model of personality

    Full text link
    In the modern era, each Internet user leaves enormous amounts of auxiliary digital residuals (footprints) by using a variety of on-line services. All this data is already collected and stored for many years. In recent works, it was demonstrated that it's possible to apply simple machine learning methods to analyze collected digital footprints and to create psycho-demographic profiles of individuals. However, while these works clearly demonstrated the applicability of machine learning methods for such an analysis, created simple prediction models still lacks accuracy necessary to be successfully applied for practical needs. We have assumed that using advanced deep machine learning methods may considerably increase the accuracy of predictions. We started with simple machine learning methods to estimate basic prediction performance and moved further by applying advanced methods based on shallow and deep neural networks. Then we compared prediction power of studied models and made conclusions about its performance. Finally, we made hypotheses how prediction accuracy can be further improved. As result of this work, we provide full source code used in the experiments for all interested researchers and practitioners in corresponding GitHub repository. We believe that applying deep machine learning for psycho-demographic profiling may have an enormous impact on the society (for good or worse) and provides means for Artificial Intelligence (AI) systems to better understand humans by creating their psychological profiles. Thus AI agents may achieve the human-like ability to participate in conversation (communication) flow by anticipating human opponents' reactions, expectations, and behavior
    • …
    corecore