1,519 research outputs found

    MILD-Net: Minimal Information Loss Dilated Network for Gland Instance Segmentation in Colon Histology Images

    Get PDF
    The analysis of glandular morphology within colon histopathology images is an important step in determining the grade of colon cancer. Despite the importance of this task, manual segmentation is laborious, time-consuming and can suffer from subjectivity among pathologists. The rise of computational pathology has led to the development of automated methods for gland segmentation that aim to overcome the challenges of manual segmentation. However, this task is non-trivial due to the large variability in glandular appearance and the difficulty in differentiating between certain glandular and non-glandular histological structures. Furthermore, a measure of uncertainty is essential for diagnostic decision making. To address these challenges, we propose a fully convolutional neural network that counters the loss of information caused by max-pooling by re-introducing the original image at multiple points within the network. We also use atrous spatial pyramid pooling with varying dilation rates for preserving the resolution and multi-level aggregation. To incorporate uncertainty, we introduce random transformations during test time for an enhanced segmentation result that simultaneously generates an uncertainty map, highlighting areas of ambiguity. We show that this map can be used to define a metric for disregarding predictions with high uncertainty. The proposed network achieves state-of-the-art performance on the GlaS challenge dataset and on a second independent colorectal adenocarcinoma dataset. In addition, we perform gland instance segmentation on whole-slide images from two further datasets to highlight the generalisability of our method. As an extension, we introduce MILD-Net+ for simultaneous gland and lumen segmentation, to increase the diagnostic power of the network.Comment: Initial version published at Medical Imaging with Deep Learning (MIDL) 201

    Deep-Learning based segmentation and quantification in experimental kidney histopathology

    Get PDF
    BACKGROUND: Nephropathologic analyses provide important outcomes-related data in experiments with the animal models that are essential for understanding kidney disease pathophysiology. Precision medicine increases the demand for quantitative, unbiased, reproducible, and efficient histopathologic analyses, which will require novel high-throughput tools. A deep learning technique, the convolutional neural network, is increasingly applied in pathology because of its high performance in tasks like histology segmentation. METHODS: We investigated use of a convolutional neural network architecture for accurate segmentation of periodic acid-Schiff-stained kidney tissue from healthy mice and five murine disease models and from other species used in preclinical research. We trained the convolutional neural network to segment six major renal structures: glomerular tuft, glomerulus including Bowman\u27s capsule, tubules, arteries, arterial lumina, and veins. To achieve high accuracy, we performed a large number of expert-based annotations, 72,722 in total. RESULTS: Multiclass segmentation performance was very high in all disease models. The convolutional neural network allowed high-throughput and large-scale, quantitative and comparative analyses of various models. In disease models, computational feature extraction revealed interstitial expansion, tubular dilation and atrophy, and glomerular size variability. Validation showed a high correlation of findings with current standard morphometric analysis. The convolutional neural network also showed high performance in other species used in research-including rats, pigs, bears, and marmosets-as well as in humans, providing a translational bridge between preclinical and clinical studies. CONCLUSIONS: We developed a deep learning algorithm for accurate multiclass segmentation of digital whole-slide images of periodic acid-Schiff-stained kidneys from various species and renal disease models. This enables reproducible quantitative histopathologic analyses in preclinical models that also might be applicable to clinical studies

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Biomedical Image Processing and Classification

    Get PDF
    Biomedical image processing is an interdisciplinary field involving a variety of disciplines, e.g., electronics, computer science, physics, mathematics, physiology, and medicine. Several imaging techniques have been developed, providing many approaches to the study of the human body. Biomedical image processing is finding an increasing number of important applications in, for example, the study of the internal structure or function of an organ and the diagnosis or treatment of a disease. If associated with classification methods, it can support the development of computer-aided diagnosis (CAD) systems, which could help medical doctors in refining their clinical picture

    Role of deep learning techniques in non-invasive diagnosis of human diseases.

    Get PDF
    Machine learning, a sub-discipline in the domain of artificial intelligence, concentrates on algorithms able to learn and/or adapt their structure (e.g., parameters) based on a set of observed data. The adaptation is performed by optimizing over a cost function. Machine learning obtained a great attention in the biomedical community because it offers a promise for improving sensitivity and/or specificity of detection and diagnosis of diseases. It also can increase objectivity of the decision making, decrease the time and effort on health care professionals during the process of disease detection and diagnosis. The potential impact of machine learning is greater than ever due to the increase in medical data being acquired, the presence of novel modalities being developed and the complexity of medical data. In all of these scenarios, machine learning can come up with new tools for interpreting the complex datasets that confront clinicians. Much of the excitement for the application of machine learning to biomedical research comes from the development of deep learning which is modeled after computation in the brain. Deep learning can help in attaining insights that would be impossible to obtain through manual analysis. Deep learning algorithms and in particular convolutional neural networks are different from traditional machine learning approaches. Deep learning algorithms are known by their ability to learn complex representations to enhance pattern recognition from raw data. On the other hand, traditional machine learning requires human engineering and domain expertise to design feature extractors and structure data. With increasing demands upon current radiologists, there are growing needs for automating the diagnosis. This is a concern that deep learning is able to address. In this dissertation, we present four different successful applications of deep learning for diseases diagnosis. All the work presented in the dissertation utilizes medical images. In the first application, we introduce a deep-learning based computer-aided diagnostic system for the early detection of acute renal transplant rejection. The system is based on the fusion of both imaging markers (apparent diffusion coefficients derived from diffusion-weighted magnetic resonance imaging) and clinical biomarkers (creatinine clearance and serum plasma creatinine). The fused data is then used as an input to train and test a convolutional neural network based classifier. The proposed system is tested on scans collected from 56 subjects from geographically diverse populations and different scanner types/image collection protocols. The overall accuracy of the proposed system is 92.9% with 93.3% sensitivity and 92.3% specificity in distinguishing non-rejected kidney transplants from rejected ones. In the second application, we propose a novel deep learning approach for the automated segmentation and quantification of the LV from cardiac cine MR images. We aimed at achieving lower errors for the estimated heart parameters compared to the previous studies by proposing a novel deep learning segmentation method. Using fully convolutional neural networks, we proposed novel methods for the extraction of a region of interest that contains the left ventricle, and the segmentation of the left ventricle. Following myocardial segmentation, functional and mass parameters of the left ventricle are estimated. Automated Cardiac Diagnosis Challenge dataset was used to validate our framework, which gave better segmentation, accurate estimation of cardiac parameters, and produced less error compared to other methods applied on the same dataset. Furthermore, we showed that our segmentation approach generalizes well across different datasets by testing its performance on a locally acquired dataset. In the third application, we propose a novel deep learning approach for automated quantification of strain from cardiac cine MR images of mice. For strain analysis, we developed a Laplace-based approach to track the LV wall points by solving the Laplace equation between the LV contours of each two successive image frames over the cardiac cycle. Following tracking, the strain estimation is performed using the Lagrangian-based approach. This new automated system for strain analysis was validated by comparing the outcome of these analysis with the tagged MR images from the same mice. There were no significant differences between the strain data obtained from our algorithm using cine compared to tagged MR imaging. In the fourth application, we demonstrate how a deep learning approach can be utilized for the automated classification of kidney histopathological images. Our approach can classify four classes: the fat, the parenchyma, the clear cell renal cell carcinoma, and the unusual cancer which has been discovered recently, called clear cell papillary renal cell carcinoma. Our framework consists of three convolutional neural networks and the whole-slide kidney images were divided into patches with three different sizes to be inputted to the networks. Our approach can provide patch-wise and pixel-wise classification. Our approach classified the four classes accurately and surpassed other state-of-the-art methods such as ResNet (pixel accuracy: 0.89 Resnet18, 0.93 proposed). In conclusion, the results of our proposed systems demonstrate the potential of deep learning for the efficient, reproducible, fast, and affordable disease diagnosis

    Imaging White Blood Cells using a Snapshot Hyper-Spectral Imaging System

    Get PDF
    Automated white blood cell (WBC) counting systems process an extracted whole blood sample and provide a cell count. A step that would not be ideal for onsite screening of individuals in triage or at a security gate. Snapshot Hyper-Spectral imaging systems are capable of capturing several spectral bands simultaneously, offering co-registered images of a target. With appropriate optics, these systems are potentially able to image blood cells in vivo as they flow through a vessel, eliminating the need for a blood draw and sample staining. Our group has evaluated the capability of a commercial Snapshot Hyper-Spectral imaging system, specifically the Arrow system from Rebellion Photonics, in differentiating between white and red blood cells on unstained and sealed blood smear slides. We evaluated the imaging capabilities of this hyperspectral camera as a platform to build an automated blood cell counting system. Hyperspectral data consisting of 25, 443x313 hyperspectral bands with ~3nm spacing were captured over the range of 419 to 494nm. Open-source hyperspectral datacube analysis tools, used primarily in Geographic Information Systems (GIS) applications, indicate that white blood cells\u27 features are most prominent in the 428-442nm band for blood samples viewed under 20x and 50x magnification over a varying range of illumination intensities. The system has shown to successfully segment blood cells based on their spectral-spatial information. These images could potentially be used in subsequent automated white blood cell segmentation and counting algorithms for performing in vivo white blood cell counting
    • …
    corecore