6,134 research outputs found

    Maximum Likelihood Distillation for Robust Modulation Classification

    Full text link
    Deep Neural Networks are being extensively used in communication systems and Automatic Modulation Classification (AMC) in particular. However, they are very susceptible to small adversarial perturbations that are carefully crafted to change the network decision. In this work, we build on knowledge distillation ideas and adversarial training in order to build more robust AMC systems. We first outline the importance of the quality of the training data in terms of accuracy and robustness of the model. We then propose to use the Maximum Likelihood function, which could solve the AMC problem in offline settings, to generate better training labels. Those labels teach the model to be uncertain in challenging conditions, which permits to increase the accuracy, as well as the robustness of the model when combined with adversarial training. Interestingly, we observe that this increase in performance transfers to online settings, where the Maximum Likelihood function cannot be used in practice. Overall, this work highlights the potential of learning to be uncertain in difficult scenarios, compared to directly removing label noise

    A robust modulation classification method using convolutional neural networks

    Get PDF
    Automatic modulation classification (AMC) is a core technique in noncooperative communication systems. In particular, feature-based (FB) AMC algorithms have been widely studied. Current FB AMC methods are commonly designed for a limited set of modulation and lack of generalization ability; to tackle this challenge, a robust AMC method using convolutional neural networks (CNN) is proposed in this paper. In total, 15 different modulation types are considered. The proposed method can classify the received signal directly without feature extracion, and it can automatically learn features from the received signals. The features learned by the CNN are presented and analyzed. The robust features of the received signals in a specific SNR range are studied. The accuracy of classification using CNN is shown to be remarkable, particularly for low SNRs. The generalization ability of robust features is also proven to be excellent using the support vector machine (SVM). Finally, to help us better understand the process of feature learning, some outputs of intermediate layers of the CNN are visualized

    A Survey of Blind Modulation Classification Techniques for OFDM Signals

    Get PDF
    Blind modulation classification (MC) is an integral part of designing an adaptive or intelligent transceiver for future wireless communications. Blind MC has several applications in the adaptive and automated systems of sixth generation (6G) communications to improve spectral efficiency and power efficiency, and reduce latency. It will become a integral part of intelligent software-defined radios (SDR) for future communication. In this paper, we provide various MC techniques for orthogonal frequency division multiplexing (OFDM) signals in a systematic way. We focus on the most widely used statistical and machine learning (ML) models and emphasize their advantages and limitations. The statistical-based blind MC includes likelihood-based (LB), maximum a posteriori (MAP) and feature-based methods (FB). The ML-based automated MC includes k-nearest neighbors (KNN), support vector machine (SVM), decision trees (DTs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) based MC methods. This survey will help the reader to understand the main characteristics of each technique, their advantages and disadvantages. We have also simulated some primary methods, i.e., statistical- and ML-based algorithms, under various constraints, which allows a fair comparison among different methodologies. The overall system performance in terms bit error rate (BER) in the presence of MC is also provided. We also provide a survey of some practical experiment works carried out through National Instrument hardware over an indoor propagation environment. In the end, open problems and possible directions for blind MC research are briefly discussed

    Domain knowledge-informed Synthetic fault sample generation with Health Data Map for cross-domain Planetary Gearbox Fault Diagnosis

    Full text link
    Extensive research has been conducted on fault diagnosis of planetary gearboxes using vibration signals and deep learning (DL) approaches. However, DL-based methods are susceptible to the domain shift problem caused by varying operating conditions of the gearbox. Although domain adaptation and data synthesis methods have been proposed to overcome such domain shifts, they are often not directly applicable in real-world situations where only healthy data is available in the target domain. To tackle the challenge of extreme domain shift scenarios where only healthy data is available in the target domain, this paper proposes two novel domain knowledge-informed data synthesis methods utilizing the health data map (HDMap). The two proposed approaches are referred to as scaled CutPaste and FaultPaste. The HDMap is used to physically represent the vibration signal of the planetary gearbox as an image-like matrix, allowing for visualization of fault-related features. CutPaste and FaultPaste are then applied to generate faulty samples based on the healthy data in the target domain, using domain knowledge and fault signatures extracted from the source domain, respectively. In addition to generating realistic faults, the proposed methods introduce scaling of fault signatures for controlled synthesis of faults with various severity levels. A case study is conducted on a planetary gearbox testbed to evaluate the proposed approaches. The results show that the proposed methods are capable of accurately diagnosing faults, even in cases of extreme domain shift, and can estimate the severity of faults that have not been previously observed in the target domain.Comment: Under review / added arXiv identifie

    A Novel Graph Neural Network-based Framework for Automatic Modulation Classification in Mobile Environments

    Get PDF
    Automatic modulation classification (AMC) refers to a signal processing procedure through which the modulation type and order of an observed signal are identified without any prior information about the communications setup. AMC has been recognized as one of the essential measures in various communications research fields such as intelligent modem design, spectrum sensing and management, and threat detection. The research literature in AMC is limited to accounting only for the noise that affects the received signal, which makes their models applicable for stationary environments. However, a more practical and real-world application of AMC can be found in mobile environments where a higher number of distorting effects is present. Hence, in this dissertation, we have developed a solution in which the distorting effects of mobile environments, e.g., multipath, Doppler shift, frequency, phase and timing offset, do not influence the process of identifying the modulation type and order classification. This solution has two major parts: recording an emulated dataset in mobile environments with real-world parameters (MIMOSigRef-SD), and developing an efficient feature-based AMC classifier. The latter itself includes two modules: feature extraction and classification. The feature extraction module runs upon a dynamic spatio-temporal graph convolutional neural network architecture, which tackles the challenges of statistical pattern recognition of received samples and assignment of constellation points. After organizing the feature space in the classification module, a support vector machine is adopted to be trained and perform classification operation. The designed robust feature extraction modules enable the developed solution to outperform other state-of-the-art AMC platforms in terms of classification accuracy and efficiency, which is an important factor for real-world implementations. We validated the performance of our developed solution in a prototyping and field-testing process in environments similar to MIMOSigRef-SD. Therefore, taking all aspects into consideration, our developed solution is deemed to be more practical and feasible for implementation in the next generations of communication systems. Advisor: Hamid R. Sharif-Kashan
    corecore