7,500 research outputs found

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Life on a scale:Deep brain stimulation in anorexia nervosa

    Get PDF
    Anorexia nervosa (AN) is a severe psychiatric disorder marked by low body weight, body image abnormalities, and anxiety and shows elevated rates of morbidity, comorbidity and mortality. Given the limited availability of evidence-based treatments, there is an urgent need to investigate new therapeutic options that are informed by the disorder’s underlying neurobiological mechanisms. This thesis represents the first study in the Netherlands and one of a limited number globally to evaluate the efficacy, safety, and tolerability of deep brain stimulation (DBS) in the treatment of AN. DBS has the advantage of being both reversible and adjustable. Beyond assessing the primary impact of DBS on body weight, psychological parameters, and quality of life, this research is novel in its comprehensive approach. We integrated evaluations of efficacy with critical examinations of the functional impact of DBS in AN, including fMRI, electroencephalography EEG, as well as endocrinological and metabolic assessments. Furthermore, this work situates AN within a broader theoretical framework, specifically focusing on its manifestation as a form of self-destructive behavior. Finally, we reflect on the practical, ethical and philosophical aspects of conducting an experimental, invasive procedure in a vulnerable patient group. This thesis deepens our understanding of the neurobiological underpinnings of AN and paves the way for future research and potential clinical applications of DBS in the management of severe and enduring AN

    Deep Learning Techniques for Electroencephalography Analysis

    Get PDF
    In this thesis we design deep learning techniques for training deep neural networks on electroencephalography (EEG) data and in particular on two problems, namely EEG-based motor imagery decoding and EEG-based affect recognition, addressing challenges associated with them. Regarding the problem of motor imagery (MI) decoding, we first consider the various kinds of domain shifts in the EEG signals, caused by inter-individual differences (e.g. brain anatomy, personality and cognitive profile). These domain shifts render multi-subject training a challenging task and impede robust cross-subject generalization. We build a two-stage model ensemble architecture and propose two objectives to train it, combining the strengths of curriculum learning and collaborative training. Our subject-independent experiments on the large datasets of Physionet and OpenBMI, verify the effectiveness of our approach. Next, we explore the utilization of the spatial covariance of EEG signals through alignment techniques, with the goal of learning domain-invariant representations. We introduce a Riemannian framework that concurrently performs covariance-based signal alignment and data augmentation, while training a convolutional neural network (CNN) on EEG time-series. Experiments on the BCI IV-2a dataset show that our method performs superiorly over traditional alignment, by inducing regularization to the weights of the CNN. We also study the problem of EEG-based affect recognition, inspired by works suggesting that emotions can be expressed in relative terms, i.e. through ordinal comparisons between different affective state levels. We propose treating data samples in a pairwise manner to infer the ordinal relation between their corresponding affective state labels, as an auxiliary training objective. We incorporate our objective in a deep network architecture which we jointly train on the tasks of sample-wise classification and pairwise ordinal ranking. We evaluate our method on the affective datasets of DEAP and SEED and obtain performance improvements over deep networks trained without the additional ranking objective

    Convolutional Neural Network Architectures for Gender, Emotional Detection from Speech and Speaker Diarization

    Get PDF
    This paper introduces three system architectures for speaker identification that aim to overcome the limitations of diarization and voice-based biometric systems. Diarization systems utilize unsupervised algorithms to segment audio data based on the time boundaries of utterances, but they do not distinguish individual speakers. On the other hand, voice-based biometric systems can only identify individuals in recordings with a single speaker. Identifying speakers in recordings of natural conversations can be challenging, especially when emotional shifts can alter voice characteristics, making gender identification difficult. To address this issue, the proposed architectures include techniques for gender, emotion, and diarization at either the segment or group level. The evaluation of these architectures utilized two speech databases, namely VoxCeleb and RAVDESS (Ryerson audio-visual database of emotional speech and song) datasets. The findings reveal that the proposed approach outperforms the strategy level in terms of recognition results, despite the real-time processing advantage of the latter. The challenge of identifying multiple speakers engaging in a conversation while considering emotional changes that impact speech is effectively addressed by the proposed architectures. The data indicates that the gender and emotion classification of diarization achieves an accuracy of over 98 percent. These results suggest that the proposed speech-based approach can achieve highly accurate speaker identification

    An investigation of entorhinal spatial representations in self-localisation behaviours

    Get PDF
    Spatial-modulated cells of the medial entorhinal cortex (MEC) and neighbouring cortices are thought to provide the neural substrate for self-localisation behaviours. These cells include grid cells of the MEC which are thought to compute path integration operations to update self-location estimates. In order to read this grid code, downstream cells are thought to reconstruct a positional estimate as a simple rate-coded representation of space. Here, I show the coding scheme of grid cell and putative readout cells recorded from mice performing a virtual reality (VR) linear location task which engaged mice in both beaconing and path integration behaviours. I found grid cells can encode two unique coding schemes on the linear track, namely a position code which reflects periodic grid fields anchored to salient features of the track and a distance code which reflects periodic grid fields without this anchoring. Grid cells were found to switch between these coding schemes within sessions. When grid cells were encoding position, mice performed better at trials that required path integration but not on trials that required beaconing. This result provides the first mechanistic evidence linking grid cell activity to path integration-dependent behaviour. Putative readout cells were found in the form of ramp cells which fire proportionally as a function of location in defined regions of the linear track. This ramping activity was found to be primarily explained by track position rather than other kinematic variables like speed and acceleration. These representations were found to be maintained across both trial types and outcomes indicating they likely result from recall of the track structure. Together, these results support the functional importance of grid and ramp cells for self-localisation behaviours. Future investigations will look into the coherence between these two neural populations, which may together form a complete neural system for coding and decoding self-location in the brain

    Antenna Selection With Beam Squint Compensation for Integrated Sensing and Communications

    Full text link
    Next-generation wireless networks strive for higher communication rates, ultra-low latency, seamless connectivity, and high-resolution sensing capabilities. To meet these demands, terahertz (THz)-band signal processing is envisioned as a key technology offering wide bandwidth and sub-millimeter wavelength. Furthermore, THz integrated sensing and communications (ISAC) paradigm has emerged jointly access spectrum and reduced hardware costs through a unified platform. To address the challenges in THz propagation, THz-ISAC systems employ extremely large antenna arrays to improve the beamforming gain for communications with high data rates and sensing with high resolution. However, the cost and power consumption of implementing fully digital beamformers are prohibitive. While hybrid analog/digital beamforming can be a potential solution, the use of subcarrier-independent analog beamformers leads to the beam-squint phenomenon where different subcarriers observe distinct directions because of adopting the same analog beamformer across all subcarriers. In this paper, we develop a sparse array architecture for THz-ISAC with hybrid beamforming to provide a cost-effective solution. We analyze the antenna selection problem under beam-squint influence and introduce a manifold optimization approach for hybrid beamforming design. To reduce computational and memory costs, we propose novel algorithms leveraging grouped subarrays, quantized performance metrics, and sequential optimization. These approaches yield a significant reduction in the number of possible subarray configurations, which enables us to devise a neural network with classification model to accurately perform antenna selection.Comment: 14pages10figures, submitted to IEE

    Representation Learning With Hidden Unit Clustering For Low Resource Speech Applications

    Full text link
    The representation learning of speech, without textual resources, is an area of significant interest for many low resource speech applications. In this paper, we describe an approach to self-supervised representation learning from raw audio using a hidden unit clustering (HUC) framework. The input to the model consists of audio samples that are windowed and processed with 1-D convolutional layers. The learned "time-frequency" representations from the convolutional neural network (CNN) module are further processed with long short term memory (LSTM) layers which generate a contextual vector representation for every windowed segment. The HUC framework, allowing the categorization of the representations into a small number of phoneme-like units, is used to train the model for learning semantically rich speech representations. The targets consist of phoneme-like pseudo labels for each audio segment and these are generated with an iterative k-means algorithm. We explore techniques that improve the speaker invariance of the learned representations and illustrate the effectiveness of the proposed approach on two settings, i) completely unsupervised speech applications on the sub-tasks described as part of the ZeroSpeech 2021 challenge and ii) semi-supervised automatic speech recognition (ASR) applications on the TIMIT dataset and on the GramVaani challenge Hindi dataset. In these experiments, we achieve state-of-art results for various ZeroSpeech tasks. Further, on the ASR experiments, the HUC representations are shown to improve significantly over other established benchmarks based on Wav2vec, HuBERT and Best-RQ

    Encoder-Decoder Networks for Self-Supervised Pretraining and Downstream Signal Bandwidth Regression on Digital Antenna Arrays

    Full text link
    This work presents the first applications of self-supervised learning applied to data from digital antenna arrays. Encoder-decoder networks are pretrained on digital array data to perform a self-supervised noisy-reconstruction task called channel in-painting, in which the network infers the contents of array data that has been masked with zeros. The self-supervised step requires no human-labeled data. The encoder architecture and weights from pretraining are then transferred to a new network with a task-specific decoder, and the new network is trained on a small volume of labeled data. We show that pretraining on the unlabeled data allows the new network to perform the task of bandwidth regression on the digital array data better than an equivalent network that is trained on the same labeled data from random initialization

    MAS: Towards Resource-Efficient Federated Multiple-Task Learning

    Full text link
    Federated learning (FL) is an emerging distributed machine learning method that empowers in-situ model training on decentralized edge devices. However, multiple simultaneous FL tasks could overload resource-constrained devices. In this work, we propose the first FL system to effectively coordinate and train multiple simultaneous FL tasks. We first formalize the problem of training simultaneous FL tasks. Then, we present our new approach, MAS (Merge and Split), to optimize the performance of training multiple simultaneous FL tasks. MAS starts by merging FL tasks into an all-in-one FL task with a multi-task architecture. After training for a few rounds, MAS splits the all-in-one FL task into two or more FL tasks by using the affinities among tasks measured during the all-in-one training. It then continues training each split of FL tasks based on model parameters from the all-in-one training. Extensive experiments demonstrate that MAS outperforms other methods while reducing training time by 2x and reducing energy consumption by 40%. We hope this work will inspire the community to further study and optimize training simultaneous FL tasks.Comment: ICCV'23. arXiv admin note: substantial text overlap with arXiv:2207.0420
    • …
    corecore