1,090 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Artificial Intelligence Aided Receiver Design for Wireless Communication Systems

    Get PDF
    Physical layer (PHY) design in the wireless communication field realizes gratifying achievements in the past few decades, especially in the emerging cellular communication systems starting from the first generation to the fifth generation (5G). With the gradual increase in technical requirements of large data processing and end-to-end system optimization, introducing artificial intelligence (AI) in PHY design has cautiously become a trend. A deep neural network (DNN), one of the population techniques of AI, enables the utilization of its ‘learnable’ feature to handle big data and establish a global system model. In this thesis, we exploited this characteristic of DNN as powerful assistance to implement two receiver designs in two different use-cases. We considered a DNN-based joint baseband demodulator and channel decoder (DeModCoder), and a DNN-based joint equalizer, baseband demodulator, and channel decoder (DeTecModCoder) in two single operational blocks, respectively. The multi-label classification (MLC) scheme was equipped to the output of conducted DNN model and hence yielded lower computational complexity than the multiple output classification (MOC) manner. The functional DNN model can be trained offline over a wide range of SNR values under different types of noises, channel fading, etc., and deployed in the real-time application; therefore, the demands of estimation of noise variance and statistical information of underlying noise can be avoided. The simulation performances indicated that compared to the corresponding conventional receiver signal processing schemes, the proposed AI-aided receiver designs have achieved the same bit error rate (BER) with around 3 dB lower SNR

    A Tutorial on Environment-Aware Communications via Channel Knowledge Map for 6G

    Full text link
    Sixth-generation (6G) mobile communication networks are expected to have dense infrastructures, large-dimensional channels, cost-effective hardware, diversified positioning methods, and enhanced intelligence. Such trends bring both new challenges and opportunities for the practical design of 6G. On one hand, acquiring channel state information (CSI) in real time for all wireless links becomes quite challenging in 6G. On the other hand, there would be numerous data sources in 6G containing high-quality location-tagged channel data, making it possible to better learn the local wireless environment. By exploiting such new opportunities and for tackling the CSI acquisition challenge, there is a promising paradigm shift from the conventional environment-unaware communications to the new environment-aware communications based on the novel approach of channel knowledge map (CKM). This article aims to provide a comprehensive tutorial overview on environment-aware communications enabled by CKM to fully harness its benefits for 6G. First, the basic concept of CKM is presented, and a comparison of CKM with various existing channel inference techniques is discussed. Next, the main techniques for CKM construction are discussed, including both the model-free and model-assisted approaches. Furthermore, a general framework is presented for the utilization of CKM to achieve environment-aware communications, followed by some typical CKM-aided communication scenarios. Finally, important open problems in CKM research are highlighted and potential solutions are discussed to inspire future work
    • …
    corecore