69,258 research outputs found

    TreeGrad: Transferring Tree Ensembles to Neural Networks

    Full text link
    Gradient Boosting Decision Tree (GBDT) are popular machine learning algorithms with implementations such as LightGBM and in popular machine learning toolkits like Scikit-Learn. Many implementations can only produce trees in an offline manner and in a greedy manner. We explore ways to convert existing GBDT implementations to known neural network architectures with minimal performance loss in order to allow decision splits to be updated in an online manner and provide extensions to allow splits points to be altered as a neural architecture search problem. We provide learning bounds for our neural network.Comment: Technical Report on Implementation of Deep Neural Decision Forests Algorithm. To accompany implementation here: https://github.com/chappers/TreeGrad. Update: Please cite as: Siu, C. (2019). "Transferring Tree Ensembles to Neural Networks". International Conference on Neural Information Processing. Springer, 2019. arXiv admin note: text overlap with arXiv:1909.1179

    NCART: Neural Classification and Regression Tree for Tabular Data

    Full text link
    Deep learning models have become popular in the analysis of tabular data, as they address the limitations of decision trees and enable valuable applications like semi-supervised learning, online learning, and transfer learning. However, these deep-learning approaches often encounter a trade-off. On one hand, they can be computationally expensive when dealing with large-scale or high-dimensional datasets. On the other hand, they may lack interpretability and may not be suitable for small-scale datasets. In this study, we propose a novel interpretable neural network called Neural Classification and Regression Tree (NCART) to overcome these challenges. NCART is a modified version of Residual Networks that replaces fully-connected layers with multiple differentiable oblivious decision trees. By integrating decision trees into the architecture, NCART maintains its interpretability while benefiting from the end-to-end capabilities of neural networks. The simplicity of the NCART architecture makes it well-suited for datasets of varying sizes and reduces computational costs compared to state-of-the-art deep learning models. Extensive numerical experiments demonstrate the superior performance of NCART compared to existing deep learning models, establishing it as a strong competitor to tree-based models

    Enhancing Decision Tree based Interpretation of Deep Neural Networks through L1-Orthogonal Regularization

    Full text link
    One obstacle that so far prevents the introduction of machine learning models primarily in critical areas is the lack of explainability. In this work, a practicable approach of gaining explainability of deep artificial neural networks (NN) using an interpretable surrogate model based on decision trees is presented. Simply fitting a decision tree to a trained NN usually leads to unsatisfactory results in terms of accuracy and fidelity. Using L1-orthogonal regularization during training, however, preserves the accuracy of the NN, while it can be closely approximated by small decision trees. Tests with different data sets confirm that L1-orthogonal regularization yields models of lower complexity and at the same time higher fidelity compared to other regularizers.Comment: 8 pages, 18th IEEE International Conference on Machine Learning and Applications (ICMLA) 201
    • …
    corecore