47,360 research outputs found

    Deep morphological neural networks

    Get PDF
    Mathematical morphology is a theory and technique applied to collect features like geometric and topological structures in digital images. Determining suitable morphological operations and structuring elements for a give purpose is a cumbersome and time-consuming task. In this paper, morphological neural networks are proposed to address this problem. Serving as a non-linear feature extracting layers in deep learning frameworks, the efficiency of the proposed morphological layer is confirmed analytically and empirically. With a known target, a single-filter morphological layer learns the structuring element correctly, and an adaptive layer can automatically select appropriate morphological operations. For high level applications, the proposed morphological neural networks are tested on several classification datasets which are related to shape or geometric image features, and the experimental results have confirmed the tradeoff between high computational efficiency and high accuracy

    Learning Deep Morphological Networks with Neural Architecture Search

    Full text link
    Deep Neural Networks (DNNs) are generated by sequentially performing linear and non-linear processes. Using a combination of linear and non-linear procedures is critical for generating a sufficiently deep feature space. The majority of non-linear operators are derivations of activation functions or pooling functions. Mathematical morphology is a branch of mathematics that provides non-linear operators for a variety of image processing problems. We investigate the utility of integrating these operations in an end-to-end deep learning framework in this paper. DNNs are designed to acquire a realistic representation for a particular job. Morphological operators give topological descriptors that convey salient information about the shapes of objects depicted in images. We propose a method based on meta-learning to incorporate morphological operators into DNNs. The learned architecture demonstrates how our novel morphological operations significantly increase DNN performance on various tasks, including picture classification and edge detection.Comment: 19 page
    • …
    corecore