1,955 research outputs found

    Neural Collaborative Filtering

    Full text link
    In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation -- collaborative filtering -- on the basis of implicit feedback. Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering -- the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items. By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural network-based Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.Comment: 10 pages, 7 figure

    VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback

    Full text link
    Modern recommender systems model people and items by discovering or `teasing apart' the underlying dimensions that encode the properties of items and users' preferences toward them. Critically, such dimensions are uncovered based on user feedback, often in implicit form (such as purchase histories, browsing logs, etc.); in addition, some recommender systems make use of side information, such as product attributes, temporal information, or review text. However one important feature that is typically ignored by existing personalized recommendation and ranking methods is the visual appearance of the items being considered. In this paper we propose a scalable factorization model to incorporate visual signals into predictors of people's opinions, which we apply to a selection of large, real-world datasets. We make use of visual features extracted from product images using (pre-trained) deep networks, on top of which we learn an additional layer that uncovers the visual dimensions that best explain the variation in people's feedback. This not only leads to significantly more accurate personalized ranking methods, but also helps to alleviate cold start issues, and qualitatively to analyze the visual dimensions that influence people's opinions.Comment: AAAI'1

    Deep Item-based Collaborative Filtering for Top-N Recommendation

    Full text link
    Item-based Collaborative Filtering(short for ICF) has been widely adopted in recommender systems in industry, owing to its strength in user interest modeling and ease in online personalization. By constructing a user's profile with the items that the user has consumed, ICF recommends items that are similar to the user's profile. With the prevalence of machine learning in recent years, significant processes have been made for ICF by learning item similarity (or representation) from data. Nevertheless, we argue that most existing works have only considered linear and shallow relationship between items, which are insufficient to capture the complicated decision-making process of users. In this work, we propose a more expressive ICF solution by accounting for the nonlinear and higher-order relationship among items. Going beyond modeling only the second-order interaction (e.g. similarity) between two items, we additionally consider the interaction among all interacted item pairs by using nonlinear neural networks. Through this way, we can effectively model the higher-order relationship among items, capturing more complicated effects in user decision-making. For example, it can differentiate which historical itemsets in a user's profile are more important in affecting the user to make a purchase decision on an item. We treat this solution as a deep variant of ICF, thus term it as DeepICF. To justify our proposal, we perform empirical studies on two public datasets from MovieLens and Pinterest. Extensive experiments verify the highly positive effect of higher-order item interaction modeling with nonlinear neural networks. Moreover, we demonstrate that by more fine-grained second-order interaction modeling with attention network, the performance of our DeepICF method can be further improved.Comment: 25 pages, submitted to TOI

    Latent Relational Metric Learning via Memory-based Attention for Collaborative Ranking

    Full text link
    This paper proposes a new neural architecture for collaborative ranking with implicit feedback. Our model, LRML (\textit{Latent Relational Metric Learning}) is a novel metric learning approach for recommendation. More specifically, instead of simple push-pull mechanisms between user and item pairs, we propose to learn latent relations that describe each user item interaction. This helps to alleviate the potential geometric inflexibility of existing metric learing approaches. This enables not only better performance but also a greater extent of modeling capability, allowing our model to scale to a larger number of interactions. In order to do so, we employ a augmented memory module and learn to attend over these memory blocks to construct latent relations. The memory-based attention module is controlled by the user-item interaction, making the learned relation vector specific to each user-item pair. Hence, this can be interpreted as learning an exclusive and optimal relational translation for each user-item interaction. The proposed architecture demonstrates the state-of-the-art performance across multiple recommendation benchmarks. LRML outperforms other metric learning models by 6%7.5%6\%-7.5\% in terms of Hits@10 and nDCG@10 on large datasets such as Netflix and MovieLens20M. Moreover, qualitative studies also demonstrate evidence that our proposed model is able to infer and encode explicit sentiment, temporal and attribute information despite being only trained on implicit feedback. As such, this ascertains the ability of LRML to uncover hidden relational structure within implicit datasets.Comment: WWW 201

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502
    corecore