45,689 research outputs found

    UG2+^{2+} Track 2: A Collective Benchmark Effort for Evaluating and Advancing Image Understanding in Poor Visibility Environments

    Full text link
    The UG2+^{2+} challenge in IEEE CVPR 2019 aims to evoke a comprehensive discussion and exploration about how low-level vision techniques can benefit the high-level automatic visual recognition in various scenarios. In its second track, we focus on object or face detection in poor visibility enhancements caused by bad weathers (haze, rain) and low light conditions. While existing enhancement methods are empirically expected to help the high-level end task, that is observed to not always be the case in practice. To provide a more thorough examination and fair comparison, we introduce three benchmark sets collected in real-world hazy, rainy, and low-light conditions, respectively, with annotate objects/faces annotated. To our best knowledge, this is the first and currently largest effort of its kind. Baseline results by cascading existing enhancement and detection models are reported, indicating the highly challenging nature of our new data as well as the large room for further technical innovations. We expect a large participation from the broad research community to address these challenges together.Comment: A summary paper on datasets, fact sheets, baseline results, challenge results, and winning methods in UG2+^{2+} Challenge (Track 2). More materials are provided in http://www.ug2challenge.org/index.htm

    Bridging the Gap Between Computational Photography and Visual Recognition

    Full text link
    What is the current state-of-the-art for image restoration and enhancement applied to degraded images acquired under less than ideal circumstances? Can the application of such algorithms as a pre-processing step to improve image interpretability for manual analysis or automatic visual recognition to classify scene content? While there have been important advances in the area of computational photography to restore or enhance the visual quality of an image, the capabilities of such techniques have not always translated in a useful way to visual recognition tasks. Consequently, there is a pressing need for the development of algorithms that are designed for the joint problem of improving visual appearance and recognition, which will be an enabling factor for the deployment of visual recognition tools in many real-world scenarios. To address this, we introduce the UG^2 dataset as a large-scale benchmark composed of video imagery captured under challenging conditions, and two enhancement tasks designed to test algorithmic impact on visual quality and automatic object recognition. Furthermore, we propose a set of metrics to evaluate the joint improvement of such tasks as well as individual algorithmic advances, including a novel psychophysics-based evaluation regime for human assessment and a realistic set of quantitative measures for object recognition performance. We introduce six new algorithms for image restoration or enhancement, which were created as part of the IARPA sponsored UG^2 Challenge workshop held at CVPR 2018. Under the proposed evaluation regime, we present an in-depth analysis of these algorithms and a host of deep learning-based and classic baseline approaches. From the observed results, it is evident that we are in the early days of building a bridge between computational photography and visual recognition, leaving many opportunities for innovation in this area.Comment: CVPR Prize Challenge: http://www.ug2challenge.or

    Extreme Low-Light Imaging with Multi-granulation Cooperative Networks

    Full text link
    Low-light imaging is challenging since images may appear to be dark and noised due to low signal-to-noise ratio, complex image content, and the variety in shooting scenes in extreme low-light condition. Many methods have been proposed to enhance the imaging quality under extreme low-light conditions, but it remains difficult to obtain satisfactory results, especially when they attempt to retain high dynamic range (HDR). In this paper, we propose a novel method of multi-granulation cooperative networks (MCN) with bidirectional information flow to enhance extreme low-light images, and design an illumination map estimation function (IMEF) to preserve high dynamic range (HDR). To facilitate this research, we also contribute to create a new benchmark dataset of real-world Dark High Dynamic Range (DHDR) images to evaluate the performance of high dynamic preservation in low light environment. Experimental results show that the proposed method outperforms the state-of-the-art approaches in terms of both visual effects and quantitative analysis

    A Deep Journey into Super-resolution: A survey

    Full text link
    Deep convolutional networks based super-resolution is a fast-growing field with numerous practical applications. In this exposition, we extensively compare 30+ state-of-the-art super-resolution Convolutional Neural Networks (CNNs) over three classical and three recently introduced challenging datasets to benchmark single image super-resolution. We introduce a taxonomy for deep-learning based super-resolution networks that groups existing methods into nine categories including linear, residual, multi-branch, recursive, progressive, attention-based and adversarial designs. We also provide comparisons between the models in terms of network complexity, memory footprint, model input and output, learning details, the type of network losses and important architectural differences (e.g., depth, skip-connections, filters). The extensive evaluation performed, shows the consistent and rapid growth in the accuracy in the past few years along with a corresponding boost in model complexity and the availability of large-scale datasets. It is also observed that the pioneering methods identified as the benchmark have been significantly outperformed by the current contenders. Despite the progress in recent years, we identify several shortcomings of existing techniques and provide future research directions towards the solution of these open problems.Comment: Accepted in ACM Computing Survey

    Face Hallucination by Attentive Sequence Optimization with Reinforcement Learning

    Full text link
    Face hallucination is a domain-specific super-resolution problem that aims to generate a high-resolution (HR) face image from a low-resolution~(LR) input. In contrast to the existing patch-wise super-resolution models that divide a face image into regular patches and independently apply LR to HR mapping to each patch, we implement deep reinforcement learning and develop a novel attention-aware face hallucination (Attention-FH) framework, which recurrently learns to attend a sequence of patches and performs facial part enhancement by fully exploiting the global interdependency of the image. Specifically, our proposed framework incorporates two components: a recurrent policy network for dynamically specifying a new attended region at each time step based on the status of the super-resolved image and the past attended region sequence, and a local enhancement network for selected patch hallucination and global state updating. The Attention-FH model jointly learns the recurrent policy network and local enhancement network through maximizing a long-term reward that reflects the hallucination result with respect to the whole HR image. Extensive experiments demonstrate that our Attention-FH significantly outperforms the state-of-the-art methods on in-the-wild face images with large pose and illumination variations.Comment: To be published in TPAM

    ResDepth: Learned Residual Stereo Reconstruction

    Full text link
    We propose an embarrassingly simple but very effective scheme for high-quality dense stereo reconstruction: (i) generate an approximate reconstruction with your favourite stereo matcher; (ii) rewarp the input images with that approximate model; (iii) with the initial reconstruction and the warped images as input, train a deep network to enhance the reconstruction by regressing a residual correction; and (iv) if desired, iterate the refinement with the new, improved reconstruction. The strategy to only learn the residual greatly simplifies the learning problem. A standard Unet without bells and whistles is enough to reconstruct even small surface details, like dormers and roof substructures in satellite images. We also investigate residual reconstruction with less information and find that even a single image is enough to greatly improve an approximate reconstruction. Our full model reduces the mean absolute error of state-of-the-art stereo reconstruction systems by >50%, both in our target domain of satellite stereo and on stereo pairs from the ETH3D benchmark.Comment: updated supplementary materia

    Baseline CNN structure analysis for facial expression recognition

    Full text link
    We present a baseline convolutional neural network (CNN) structure and image preprocessing methodology to improve facial expression recognition algorithm using CNN. To analyze the most efficient network structure, we investigated four network structures that are known to show good performance in facial expression recognition. Moreover, we also investigated the effect of input image preprocessing methods. Five types of data input (raw, histogram equalization, isotropic smoothing, diffusion-based normalization, difference of Gaussian) were tested, and the accuracy was compared. We trained 20 different CNN models (4 networks x 5 data input types) and verified the performance of each network with test images from five different databases. The experiment result showed that a three-layer structure consisting of a simple convolutional and a max pooling layer with histogram equalization image input was the most efficient. We describe the detailed training procedure and analyze the result of the test accuracy based on considerable observation.Comment: 6 pages, RO-MAN2016 Conferenc

    Attention-Aware Face Hallucination via Deep Reinforcement Learning

    Full text link
    Face hallucination is a domain-specific super-resolution problem with the goal to generate high-resolution (HR) faces from low-resolution (LR) input images. In contrast to existing methods that often learn a single patch-to-patch mapping from LR to HR images and are regardless of the contextual interdependency between patches, we propose a novel Attention-aware Face Hallucination (Attention-FH) framework which resorts to deep reinforcement learning for sequentially discovering attended patches and then performing the facial part enhancement by fully exploiting the global interdependency of the image. Specifically, in each time step, the recurrent policy network is proposed to dynamically specify a new attended region by incorporating what happened in the past. The state (i.e., face hallucination result for the whole image) can thus be exploited and updated by the local enhancement network on the selected region. The Attention-FH approach jointly learns the recurrent policy network and local enhancement network through maximizing the long-term reward that reflects the hallucination performance over the whole image. Therefore, our proposed Attention-FH is capable of adaptively personalizing an optimal searching path for each face image according to its own characteristic. Extensive experiments show our approach significantly surpasses the state-of-the-arts on in-the-wild faces with large pose and illumination variations

    PIRM Challenge on Perceptual Image Enhancement on Smartphones: Report

    Full text link
    This paper reviews the first challenge on efficient perceptual image enhancement with the focus on deploying deep learning models on smartphones. The challenge consisted of two tracks. In the first one, participants were solving the classical image super-resolution problem with a bicubic downscaling factor of 4. The second track was aimed at real-world photo enhancement, and the goal was to map low-quality photos from the iPhone 3GS device to the same photos captured with a DSLR camera. The target metric used in this challenge combined the runtime, PSNR scores and solutions' perceptual results measured in the user study. To ensure the efficiency of the submitted models, we additionally measured their runtime and memory requirements on Android smartphones. The proposed solutions significantly improved baseline results defining the state-of-the-art for image enhancement on smartphones

    Face Image Reflection Removal

    Full text link
    Face images captured through the glass are usually contaminated by reflections. The non-transmitted reflections make the reflection removal more challenging than for general scenes, because important facial features are completely occluded. In this paper, we propose and solve the face image reflection removal problem. We remove non-transmitted reflections by incorporating inpainting ideas into a guided reflection removal framework and recover facial features by considering various face-specific priors. We use a newly collected face reflection image dataset to train our model and compare with state-of-the-art methods. The proposed method shows advantages in estimating reflection-free face images for improving face recognition
    corecore