1,841 research outputs found

    Data-driven prediction of vortex-induced vibration response of marine risers subjected to three-dimensional current

    Full text link
    Slender marine structures such as deep-water marine risers are subjected to currents and will normally experience Vortex Induced Vibrations (VIV), which can cause fast accumulation of fatigue damage. The ocean current is often three-dimensional (3D), i.e., the direction and magnitude of the current vary throughout the water column. Today, semi-empirical tools are used by the industry to predict VIV induced fatigue on risers. The load model and hydrodynamic parameters in present VIV prediction tools are developed based on two-dimensional (2D) flow conditions, as it is challenging to consider the effect of 3D flow along the risers. Accordingly, the current profiles must be purposely made 2D during the design process, which leads to significant uncertainty in the prediction results. Further, due to the limitations in the laboratory, VIV model tests are mostly carried out under 2D flow conditions and thus little experimental data exist to document VIV response of riser subjected to varying directions of the current. However, a few experiments have been conducted with 3D current. We have used results from one of these experiments to investigate how well 1) traditional and 2) an alternative method based on a data driven prediction can describe VIV in 3D currents. Data driven modelling is particularly suited for complicated problems with many parameters and non-linear relationships. We have applied a data clustering algorithm to the experimental 3D flow data in order to identify measurable parameters that can influence responses. The riser responses are grouped based on their statistical characteristics, which relate to the direction of the flow. Furthermore we fit a random forest regression model to the measured VIV response and compare its performance with the predictions of existing VIV prediction tools (VIVANA-FD).Comment: 12 pages, presented at Norwegian AI Society Symposium 2019, accepted for publication in Springer Conference Proceeding

    λ”₯λŸ¬λ‹ 기반 와λ₯˜κΈ°μΈ μ„ λ°• ν”„λ‘œνŽ λŸ¬ 진동 탐지 기술

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 기계항곡곡학뢀(λ©€ν‹°μŠ€μΌ€μΌ 기계섀계전곡), 2022. 8. κΉ€μœ€μ˜.κ΅­μ œν•΄μ‚¬κΈ°κ΅¬(IMO)의 νƒ„μ†Œ λ°°μΆœλŸ‰ 저감 규제 λ“±μ˜ κ·œμ œμ— 따라 μ‘°μ„  ν•΄μš΄μ—…κ³„λŠ” μ„ λ°•μ˜ μ΄ˆλŒ€ν˜•ν™”μ™€ μ—λ„ˆμ§€ 저감μž₯치(ESD) λ“± μΉœν™˜κ²½ μž₯치 적용으둜 λŒ€μ‘ν•˜κ³  μžˆλ‹€. 이에 따라 μ„ λ°•μ˜ ν”„λ‘œνŽ λŸ¬, λŸ¬λ”, ESD λ“± μˆ˜μ€‘ ꡬ쑰물의 섀계 λ³€ν™”κ°€ μš”κ΅¬λ˜κ³  μžˆλ‹€. μƒˆλ‘œμš΄ 섀계 μš”κ΅¬μ‘°κ±΄μ— 맞좰 μ£Όμš” μ œμ›μ΄ κ²°μ •λ˜λ©° μ „μ‚°μœ μ²΄ν•΄μ„ 및 μˆ˜μ‘°μ‹œν—˜μ„ ν†΅ν•œ μ„±λŠ₯섀계, 진동해석 및 ꡬ쑰강도해석을 ν†΅ν•œ ꡬ쑰섀계가 μ§„ν–‰λœλ‹€. μˆ˜μ€‘κ΅¬μ‘°λ¬Ό μ œμž‘ μ΄ν›„μ—λŠ” ν’ˆμ§ˆκ²€μ‚¬λ₯Ό 거쳐 μ‹œμš΄μ „ 쀑에 μ„±λŠ₯κ³Ό 진동평가λ₯Ό 마치면 선박이 μΈλ„λœλ‹€. μΉœν™˜κ²½ μž₯μΉ˜κ°€ μ„€μΉ˜λœ λŒ€ν˜• μƒμ„ μ˜ μ„ λ―Έ ꡬ쑰물은 ν˜•μƒμ΄ λ³΅μž‘ν•˜μ—¬ μœ λ™ 및 μ§„λ™νŠΉμ„±μ˜ 섀계 민감도가 크고 생산 곡차에 λ”°λ₯Έ ν”Όλ‘œμˆ˜λͺ…μ˜ 산포가 크기 λ•Œλ¬Έμ— 초기 μ„€κ³„λ‹¨κ³„μ—μ„œ λͺ¨λ“  ν’ˆμ§ˆλ¬Έμ œλ₯Ό 걸러 λ‚΄κΈ° μ–΄λ €μš΄ λ¬Έμ œκ°€ μžˆλ‹€. 특히 μœ λ™μž₯에 μžˆλŠ” μˆ˜μ€‘κ΅¬μ‘°λ¬Όμ˜ 경우 νŠΉμ • μœ μ†μ—μ„œ 와λ₯˜ μ΄νƒˆμ΄ λ°œμƒν•˜κ²Œ 되며 와λ₯˜ μ΄νƒˆ μ£ΌνŒŒμˆ˜κ°€ ꡬ쑰물의 κ³ μœ μ§„λ™μˆ˜κ°€ μΌμΉ˜ν•˜λŠ” 경우 곡진에 μΈν•œ 와λ₯˜κΈ°μΈμ§„동(Vortex Induced Vibration; VIV) λ¬Έμ œκ°€ μ’…μ’… λ°œμƒλ˜μ–΄ μˆ˜μ€‘κ΅¬μ‘°λ¬Ό ν”Όλ‘œμ†μƒμ˜ 원인이 되고 μžˆλ‹€. VIV λ¬Έμ œκ°€ μžˆλŠ” μƒνƒœλ‘œ 선박이 인도될 경우 μ„€κ³„μˆ˜λͺ…을 λ§Œμ‘±ν•˜μ§€ λͺ»ν•˜κ³  단기간에 νŒŒμ†μ΄ λ˜λŠ” κ²½μš°κ°€ λ§Žμ•„ μ‘°μ„ μ†Œμ— 큰 ν”Όν•΄λ₯Ό μ£ΌκΈ° λ•Œλ¬Έμ— μ„ λ°• 인도 직전인 μ„ λ°• μ‹œμš΄μ „ λ‹¨κ³„μ—μ„œ μ§„λ™μ΄λ‚˜ 응λ ₯ 계츑을 톡해 VIV λ°œμƒ μ—¬λΆ€μ˜ 확인이 ν•„μš”ν•˜λ‹€. ꡬ쑰물에 μž‘μš©ν•˜λŠ” ν•˜μ€‘μ„ κ³„μΈ‘ν•˜λŠ” 전톡적인 방법은 ꡬ쑰물에 μŠ€νŠΈλ ˆμΈκ²Œμ΄μ§€λ₯Ό μ„€μΉ˜ν•˜κ³  μˆ˜μ€‘ ν…”λ ˆλ―Έν„°λ¦¬λ₯Ό μ„€μΉ˜ν•˜μ—¬ ꡬ쑰물의 μŠ€νŠΈλ ˆμΈμ„ 직접 κ³„μΈ‘ν•˜λŠ” λ°©λ²•μ΄μ§€λ§Œ 계츑을 μœ„ν•΄ λ§Žμ€ λΉ„μš©μ΄ μ†Œμš”λ˜κ³  계츑 μ‹€νŒ¨μ˜ κ°€λŠ₯성이 맀우 λ†’λ‹€λŠ” λ¬Έμ œκ°€ μžˆλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” λŒ€ν˜• 상선 ν”„λ‘œνŽ λŸ¬μ˜ λŒ€ν‘œμ μΈ 손상 원인인 Vortex Induced Vibration을 μ‹œμš΄μ „ λ‹¨κ³„μ—μ„œ 선체 진동 계츑을 톡해 κ°„μ ‘μ μœΌλ‘œ κ²€μΆœν•  수 μžˆλŠ” 방법을 μ œμ•ˆν•˜μ˜€λ‹€. νŠΉμ • VIVκ°€ λ¬Έμ œκ°€ λ˜λŠ” κ²½μš°λŠ” μœ μ†μ—μ„œ 와λ₯˜ μ΄νƒˆ μ£ΌνŒŒμˆ˜κ°€ ꡬ쑰물의 κ³ μœ μ§„λ™μˆ˜κ°€ μΌμΉ˜ν•˜λŠ” 경우 곡진에 μ˜ν•΄ 와λ₯˜μ΄νƒˆ 강도가 μ¦κ°€ν•˜κ³  μœ μ†μ΄ μ¦κ°€ν•˜λ”λΌλ„ 와λ₯˜μ΄νƒˆ μ£ΌνŒŒμˆ˜κ°€ μœ μ§€λ˜λŠ” Lock-in ν˜„μƒμ΄ λ°œμƒν•˜λŠ” 경우둜 κ°„μ ‘ 계츑을 톡해 이λ₯Ό λͺ…μ‹œμ μœΌλ‘œ 확인할 수 μžˆλ‹€. 이λ₯Ό μœ„ν•΄μ„œλŠ” 진동 μ „λ¬Έκ°€μ˜ 반볡적인 진동 계츑 및 평가 ν”„λ‘œμ„ΈμŠ€κ°€ ν•„μš”ν•œλ° λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ „λ¬Έκ°€λ₯Ό λŒ€μ‹ ν•œ λ”₯λŸ¬λ‹ μ•Œκ³ λ¦¬μ¦˜μ„ μ΄μš©ν•œ VIV 탐지 μ‹œμŠ€ν…œμ„ μ œμ•ˆν•˜μ˜€λ‹€. 진동 뢄석과 VIV κ²€μΆœ μžλ™ν™”λ₯Ό μœ„ν•΄ 이미지 기반의 Object detection을 μœ„ν•΄ 널리 이용되고 μžˆλŠ” CNN(Convolution Neural Network) μ•Œκ³ λ¦¬μ¦˜μ„ μ΄μš©ν•˜μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” Object detection을 μˆ˜ν–‰ν•˜λ˜ Classification은 μˆ˜ν–‰ν•˜μ§€ μ•Šμ•„λ„ λ˜λŠ” νŠΉμ§•μ΄ μžˆμ–΄ 이에 νŠΉν™”λœ CNN λͺ¨λΈ κ°œλ°œμ„ μœ„ν•΄ Hyper parameterλ₯Ό μ‘°μ •ν•˜μ—¬ Hidden Layerλ₯Ό μ¦κ°€ν•˜λŠ” λ°©λ²•μœΌλ‘œ 30개의 CNNλͺ¨λΈμ„ κ²€ν† ν•˜μ˜€κ³  μ΅œμ’…μ μœΌλ‘œ 과적합이 없이 탐지 μ„±λŠ₯이 높은 5개의 Hidden layer 가진 λͺ¨λΈμ„ μ œμ•ˆν•˜μ˜€λ‹€. CNN ν•™μŠ΅μ„ μœ„ν•΄ ν•„μš”ν•œ λŒ€κ·œλͺ¨μ˜ 데이터 생성을 μœ„ν•΄ 진동 λͺ¨λ“œ 쀑첩법 기반의 간이 μ„ λ°• λͺ¨λΈμ„ μ œμ•ˆν•˜μ˜€κ³  ν”„λ‘œνŽ λŸ¬ 기진λ ₯을 λͺ¨μ‚¬ν•˜μ˜€λ‹€. 간이 λͺ¨λΈμ„ μ΄μš©ν•˜μ—¬ μ‹€μ œ 진동계츑 결과와 μœ μ‚¬ν•œ 진동 νŠΉμ„±μ„ λ³΄μ΄λŠ” 10,000개의 데이터λ₯Ό μƒμ„±ν•˜μ—¬ ν•™μŠ΅μ— μ΄μš©ν•˜μ˜€κ³  1,000개의 데이터λ₯Ό μ΄μš©ν•˜μ—¬ ν…ŒμŠ€νŠΈν•œ κ²°κ³Ό 82%μ΄μƒμ˜ 탐지 성곡λ₯ μ„ λ³΄μ˜€λ‹€. μ œμ•ˆλœ νƒμ§€μ‹œμŠ€ν…œμ˜ 검증을 μœ„ν•΄ μΆ•μ†Œλͺ¨λΈ μ‹œν—˜μ„ μˆ˜ν–‰ν•˜μ˜€λ‹€. ν”„λ‘œνŽ λŸ¬μ—μ„œ Vortex shedding μ£ΌνŒŒμˆ˜μ™€ λΈ”λ ˆμ΄λ“œμ˜ μˆ˜μ€‘ κ³ μœ μ§„λ™μˆ˜κ°€ μΌμΉ˜ν•˜λ„λ‘ μ„€κ³„λœ 1/10 μŠ€μΌ€μΌμ˜ μ„ λ°• 좔진 μ‹œμŠ€ν…œ μΆ•μ†Œ λͺ¨λΈμ„ μ΄μš©ν•˜μ—¬ ν”„λ‘œνŽ λŸ¬μ—μ„œ Vortex Induced Vibration을 λ°œμƒμ‹œν‚€κ³  ν”„λ‘œνŽ λŸ¬ μ£Όλ³€ κ΅¬μ‘°λ¬Όμ—μ„œ 가속도계λ₯Ό μ΄μš©ν•˜μ—¬ Lock-in ν˜„μƒμ— μ˜ν•œ 진동을 μΈ‘μ •ν•˜μ˜€λ‹€. 이 μ‹ ν˜Έλ₯Ό μ΄μš©ν•˜μ—¬ 개발된 μ‹œμŠ€ν…œμœΌλ‘œ VIV의 κ²€μΆœμ΄ κ°€λŠ₯함을 λ³΄μ˜€λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ VIVλ¬Έμ œκ°€ λ°œμƒν–ˆλ˜ μ›μœ μš΄λ°˜μ„ μ˜ μ‹œμš΄μ „ 쀑 κΈ°κ΄€μ‹€ λ‚΄μ—μ„œ κ³„μΈ‘λœ 선체 ꡬ쑰 진동값을 μ΄μš©ν•˜μ—¬ 개발된 탐지 μ‹œμŠ€ν…œμ˜ 타당성을 κ²€μ¦ν•˜κ³  μ‹€μ œ μ„ λ°•μ—μ„œμ˜ 적용 κ°€λŠ₯성도 ν™•μΈν•˜μ˜€λ‹€. 개발된 μ‹œμŠ€ν…œμ€ VIV κ²€μΆœμ€ μœ„ν•œ μžλ™ν™” μ‹œμŠ€ν…œμœΌλ‘œ ν™œμš©μ΄ κ°€λŠ₯ν•  κ²ƒμœΌλ‘œ 보이며 ν–₯ν›„ μ‹€μ„  데이터가 확보될 경우 μœ μš©μ„±μ΄ 증가할 κ²ƒμœΌλ‘œ κΈ°λŒ€λœλ‹€Due to the International Maritime Organization’s (IMO) regulations on carbon emission reduction, the shipbuilding and shipping industry increases the size of ships and adopts energy-saving devices (ESD) on ships. Accordingly, design changes of underwater structures such as propellers, rudders, and ESD of ships are required in line with these trends. The lock-in phenomenon caused by vortex-induced vibration (VIV) is a potential cause of vibration fatigue and singing of the propellers of large merchant ships. The VIV occurs when the vibration frequency of a structure immersed in a fluid is locked in its resonance frequencies within a flow speed range. Here, a deep learning-based algorithm is proposed for early detection of the VIV phenomenon. A salient feature in this approach is that the vibrations of a hull structure are used instead of the vibrations of its propeller, implying that indirect hull structure data relatively easy to acquire are utilized. The RPM-frequency representations of the measured vibration signals, which stack the vibration frequency spectrum respective to the propeller RPMs, are used in the algorithm. The resulting waterfall charts, which look like two-dimensional image data, are fed into the proposed convolutional neural network architecture. To generate a large data set needed for the network training, we propose to synthetically produce vibration data using the modal superposition method without computationally-expensive fluid-structure interaction analysis. This way, we generated 100,000 data sets for training, 1,000 sets for hyper-parameter tuning, and 1,000 data sets for the test. The trained network was found to have a success rate of 82% for the test set. We collected vibration data in our laboratory's small-scale ship propulsion system to test the proposed VIV detection algorithm in a more realistic environment. The system was so designed that the vortex shedding frequency and the underwater natural frequency match each other. The proposed VIV detection algorithm was applied to the vibration data collected from the small-scale system. The system was operated in the air and found to be sufficiently reliable. Finally, the proposed algorithm applied to the collected vibration data from the hull structure of a commercial full-scale crude oil carrier in her sea trial operation detected the propeller singing phenomenon correctly.CHAPTER 1. INTRODUCTION 1 1.1 Motivation 1 1.2 Research objectives 8 1.3 Outline of thesis 9 CHAPTER 2. PROPELLER VORTEX-INDUCED VIBRATION MEASUREMNT METHOD 24 2.1 Structural vibration measurement methods 24 2.2 Direct measuremt method for propeller vibration 26 2.3 Indirect measuremt method for propeller vibration 28 CHAPTER 3. DEEP LEARNING NETWORK FOR VIV IDENTIFICATION 39 3.1 Convolution Neural Network 39 3.2 Data generation using mode superposition 46 3.3 Structure of the proposed CNN model 50 3.4 Deep neural networks 53 3.5 Training and diagnosis steps 55 3.6 Performance of the diagnositc model 56 CHAPTER 4. EXPERIMETS AND RESULTS 76 4.1 Experimental apparatus and data collection 76 4.2 Results and discussion 78 CHAPTER 5. ENHANCEMENT OF DETECTION PERFORMANCE USING MULTI-CHANNEL APPROACH 98 CHAPTER 6. VORTEX-INDUCED VIBRATIOIN IDENTIFICATION IN THE PROPELLER OF A CRUDE OIL CARRIER 105 CHAPTER 7. CONCLUSION 114 REFERENCES 118 ABSTRACT(KOREAN) 127λ°•
    • …
    corecore