60,341 research outputs found

    Going Deeper with Convolutional Neural Network for Intelligent Transportation

    Get PDF
    Over last several decades, computer vision researchers have been devoted to find good feature to solve different tasks, object recognition, object detection, object segmentation, activity recognition and so forth. Ideal features transform raw pixel intensity values to a representation in which these computer vision problems are easier to solve. Recently, deep feature from covolutional neural network(CNN) have attracted many researchers to solve many problems in computer vision. In the supervised setting, these hierarchies are trained to solve specific problems by minimizing an objective function for different tasks. More recently, the feature learned from large scale image dataset have been proved to be very effective and generic for many computer vision task. The feature learned from recognition task can be used in the object detection task. This work aims to uncover the principles that lead to these generic feature representations in the transfer learning, which does not need to train the dataset again but transfer the rich feature from CNN learned from ImageNet dataset. This work aims to uncover the principles that lead to these generic feature representations in the transfer learning, which does not need to train the dataset again but transfer the rich feature from CNN learned from ImageNet dataset. We begin by summarize some related prior works, particularly the paper in object recognition, object detection and segmentation. We introduce the deep feature to computer vision task in intelligent transportation system. First, we apply deep feature in object detection task, especially in vehicle detection task. Second, to make fully use of objectness proposals, we apply proposal generator on road marking detection and recognition task. Third, to fully understand the transportation situation, we introduce the deep feature into scene understanding in road. We experiment each task for different public datasets, and prove our framework is robust

    On the Importance of Visual Context for Data Augmentation in Scene Understanding

    Get PDF
    Performing data augmentation for learning deep neural networks is known to be important for training visual recognition systems. By artificially increasing the number of training examples, it helps reducing overfitting and improves generalization. While simple image transformations can already improve predictive performance in most vision tasks, larger gains can be obtained by leveraging task-specific prior knowledge. In this work, we consider object detection, semantic and instance segmentation and augment the training images by blending objects in existing scenes, using instance segmentation annotations. We observe that randomly pasting objects on images hurts the performance, unless the object is placed in the right context. To resolve this issue, we propose an explicit context model by using a convolutional neural network, which predicts whether an image region is suitable for placing a given object or not. In our experiments, we show that our approach is able to improve object detection, semantic and instance segmentation on the PASCAL VOC12 and COCO datasets, with significant gains in a limited annotation scenario, i.e. when only one category is annotated. We also show that the method is not limited to datasets that come with expensive pixel-wise instance annotations and can be used when only bounding boxes are available, by employing weakly-supervised learning for instance masks approximation.Comment: Updated the experimental section. arXiv admin note: substantial text overlap with arXiv:1807.0742

    CASENet: Deep Category-Aware Semantic Edge Detection

    Full text link
    Boundary and edge cues are highly beneficial in improving a wide variety of vision tasks such as semantic segmentation, object recognition, stereo, and object proposal generation. Recently, the problem of edge detection has been revisited and significant progress has been made with deep learning. While classical edge detection is a challenging binary problem in itself, the category-aware semantic edge detection by nature is an even more challenging multi-label problem. We model the problem such that each edge pixel can be associated with more than one class as they appear in contours or junctions belonging to two or more semantic classes. To this end, we propose a novel end-to-end deep semantic edge learning architecture based on ResNet and a new skip-layer architecture where category-wise edge activations at the top convolution layer share and are fused with the same set of bottom layer features. We then propose a multi-label loss function to supervise the fused activations. We show that our proposed architecture benefits this problem with better performance, and we outperform the current state-of-the-art semantic edge detection methods by a large margin on standard data sets such as SBD and Cityscapes.Comment: Accepted to CVPR 201
    • …
    corecore