86,414 research outputs found

    Deep learning methods for mining genomic sequence patterns

    Get PDF
    Nowadays, with the growing availability of large-scale genomic datasets and advanced computational techniques, more and more data-driven computational methods have been developed to analyze genomic data and help to solve incompletely understood biological problems. Among them, deep learning methods, have been proposed to automatically learn and recognize the functional activity of DNA sequences from genomics data. Techniques for efficient mining genomic sequence pattern will help to improve our understanding of gene regulation, and thus accelerate our progress toward using personal genomes in medicine. This dissertation focuses on the development of deep learning methods for mining genomic sequences. First, we compare the performance between deep learning models and traditional machine learning methods in recognizing various genomic sequence patterns. Through extensive experiments on both simulated data and real genomic sequence data, we demonstrate that an appropriate deep learning model can be generally made for successfully recognizing various genomic sequence patterns. Next, we develop deep learning methods to help solve two specific biological problems, (1) inference of polyadenylation code and (2) tRNA gene detection and functional prediction. Polyadenylation is a pervasive mechanism that has been used by Eukaryotes for regulating mRNA transcription, localization, and translation efficiency. Polyadenylation signals in the plant are particularly noisy and challenging to decipher. A deep convolutional neural network approach DeepPolyA is proposed to predict poly(A) site from the plant Arabidopsis thaliana genomic sequences. It employs various deep neural network architectures and demonstrates its superiority in comparison with competing methods, including classical machine learning algorithms and several popular deep learning models. Transfer RNAs (tRNAs) represent a highly complex class of genes and play a central role in protein translation. There remains a de facto tool, tRNAscan-SE, for identifying tRNA genes encoded in genomes. Despite its popularity and success, tRNAscan-SE is still not powerful enough to separate tRNAs from pseudo-tRNAs, and a significant number of false positives can be output as a result. To address this issue, tRNA-DL, a hybrid combination of convolutional neural network and recurrent neural network approach is proposed. It is shown that the proposed method can help to reduce the false positive rate of the state-of-art tRNA prediction tool tRNAscan-SE substantially. Coupled with tRNAscan-SE, tRNA-DL can serve as a useful complementary tool for tRNA annotation. Taken together, the experiments and applications demonstrate the superiority of deep learning in automatic feature generation for characterizing genomic sequence patterns

    Graph embedding and geometric deep learning relevance to network biology and structural chemistry

    Get PDF
    Graphs are used as a model of complex relationships among data in biological science since the advent of systems biology in the early 2000. In particular, graph data analysis and graph data mining play an important role in biology interaction networks, where recent techniques of artificial intelligence, usually employed in other type of networks (e.g., social, citations, and trademark networks) aim to implement various data mining tasks including classification, clustering, recommendation, anomaly detection, and link prediction. The commitment and efforts of artificial intelligence research in network biology are motivated by the fact that machine learning techniques are often prohibitively computational demanding, low parallelizable, and ultimately inapplicable, since biological network of realistic size is a large system, which is characterised by a high density of interactions and often with a non-linear dynamics and a non-Euclidean latent geometry. Currently, graph embedding emerges as the new learning paradigm that shifts the tasks of building complex models for classification, clustering, and link prediction to learning an informative representation of the graph data in a vector space so that many graph mining and learning tasks can be more easily performed by employing efficient non-iterative traditional models (e.g., a linear support vector machine for the classification task). The great potential of graph embedding is the main reason of the flourishing of studies in this area and, in particular, the artificial intelligence learning techniques. In this mini review, we give a comprehensive summary of the main graph embedding algorithms in light of the recent burgeoning interest in geometric deep learning

    Computationally Linking Chemical Exposure to Molecular Effects with Complex Data: Comparing Methods to Disentangle Chemical Drivers in Environmental Mixtures and Knowledge-based Deep Learning for Predictions in Environmental Toxicology

    Get PDF
    Chemical exposures affect the environment and may lead to adverse outcomes in its organisms. Omics-based approaches, like standardised microarray experiments, have expanded the toolbox to monitor the distribution of chemicals and assess the risk to organisms in the environment. The resulting complex data have extended the scope of toxicological knowledge bases and published literature. A plethora of computational approaches have been applied in environmental toxicology considering systems biology and data integration. Still, the complexity of environmental and biological systems given in data challenges investigations of exposure-related effects. This thesis aimed at computationally linking chemical exposure to biological effects on the molecular level considering sources of complex environmental data. The first study employed data of an omics-based exposure study considering mixture effects in a freshwater environment. We compared three data-driven analyses in their suitability to disentangle mixture effects of chemical exposures to biological effects and their reliability in attributing potentially adverse outcomes to chemical drivers with toxicological databases on gene and pathway levels. Differential gene expression analysis and a network inference approach resulted in toxicologically meaningful outcomes and uncovered individual chemical effects — stand-alone and in combination. We developed an integrative computational strategy to harvest exposure-related gene associations from environmental samples considering mixtures of lowly concentrated compounds. The applied approaches allowed assessing the hazard of chemicals more systematically with correlation-based compound groups. This dissertation presents another achievement toward a data-driven hypothesis generation for molecular exposure effects. The approach combined text-mining and deep learning. The study was entirely data-driven and involved state-of-the-art computational methods of artificial intelligence. We employed literature-based relational data and curated toxicological knowledge to predict chemical-biomolecule interactions. A word embedding neural network with a subsequent feed-forward network was implemented. Data augmentation and recurrent neural networks were beneficial for training with curated toxicological knowledge. The trained models reached accuracies of up to 94% for unseen test data of the employed knowledge base. However, we could not reliably confirm known chemical-gene interactions across selected data sources. Still, the predictive models might derive unknown information from toxicological knowledge sources, like literature, databases or omics-based exposure studies. Thus, the deep learning models might allow predicting hypotheses of exposure-related molecular effects. Both achievements of this dissertation might support the prioritisation of chemicals for testing and an intelligent selection of chemicals for monitoring in future exposure studies.:Table of Contents ... I Abstract ... V Acknowledgements ... VII Prelude ... IX 1 Introduction 1.1 An overview of environmental toxicology ... 2 1.1.1 Environmental toxicology ... 2 1.1.2 Chemicals in the environment ... 4 1.1.3 Systems biological perspectives in environmental toxicology ... 7 Computational toxicology ... 11 1.2.1 Omics-based approaches ... 12 1.2.2 Linking chemical exposure to transcriptional effects ... 14 1.2.3 Up-scaling from the gene level to higher biological organisation levels ... 19 1.2.4 Biomedical literature-based discovery ... 24 1.2.5 Deep learning with knowledge representation ... 27 1.3 Research question and approaches ... 29 2 Methods and Data ... 33 2.1 Linking environmental relevant mixture exposures to transcriptional effects ... 34 2.1.1 Exposure and microarray data ... 34 2.1.2 Preprocessing ... 35 2.1.3 Differential gene expression ... 37 2.1.4 Association rule mining ... 38 2.1.5 Weighted gene correlation network analysis ... 39 2.1.6 Method comparison ... 41 Predicting exposure-related effects on a molecular level ... 44 2.2.1 Input ... 44 2.2.2 Input preparation ... 47 2.2.3 Deep learning models ... 49 2.2.4 Toxicogenomic application ... 54 3 Method comparison to link complex stream water exposures to effects on the transcriptional level ... 57 3.1 Background and motivation ... 58 3.1.1 Workflow ... 61 3.2 Results ... 62 3.2.1 Data preprocessing ... 62 3.2.2 Differential gene expression analysis ... 67 3.2.3 Association rule mining ... 71 3.2.4 Network inference ... 78 3.2.5 Method comparison ... 84 3.2.6 Application case of method integration ... 87 3.3 Discussion ... 91 3.4 Conclusion ... 99 4 Deep learning prediction of chemical-biomolecule interactions ... 101 4.1 Motivation ... 102 4.1.1Workflow ...105 4.2 Results ... 107 4.2.1 Input preparation ... 107 4.2.2 Model selection ... 110 4.2.3 Model comparison ... 118 4.2.4 Toxicogenomic application ... 121 4.2.5 Horizontal augmentation without tail-padding ...123 4.2.6 Four-class problem formulation ... 124 4.2.7 Training with CTD data ... 125 4.3 Discussion ... 129 4.3.1 Transferring biomedical knowledge towards toxicology ... 129 4.3.2 Deep learning with biomedical knowledge representation ...133 4.3.3 Data integration ...136 4.4 Conclusion ... 141 5 Conclusion and Future perspectives ... 143 5.1 Conclusion ... 143 5.1.1 Investigating complex mixtures in the environment ... 144 5.1.2 Complex knowledge from literature and curated databases predict chemical- biomolecule interactions ... 145 5.1.3 Linking chemical exposure to biological effects by integrating CTD ... 146 5.2 Future perspectives ... 147 S1 Supplement Chapter 1 ... 153 S1.1 Example of an estrogen bioassay ... 154 S1.2 Types of mode of action ... 154 S1.3 The dogma of molecular biology ... 157 S1.4 Transcriptomics ... 159 S2 Supplement Chapter 3 ... 161 S3 Supplement Chapter 4 ... 175 S3.1 Hyperparameter tuning results ... 176 S3.2 Functional enrichment with predicted chemical-gene interactions and CTD reference pathway genesets ... 179 S3.3 Reduction of learning rate in a model with large word embedding vectors ... 183 S3.4 Horizontal augmentation without tail-padding ... 183 S3.5 Four-relationship classification ... 185 S3.6 Interpreting loss observations for SemMedDB trained models ... 187 List of Abbreviations ... i List of Figures ... vi List of Tables ... x Bibliography ... xii Curriculum scientiae ... xxxix Selbständigkeitserklärung ... xlii

    Machine Learning Based Applications for Data Visualization, Modeling, Control, and Optimization for Chemical and Biological Systems

    Get PDF
    This dissertation report covers Yan Ma’s Ph.D. research with applicational studies of machine learning in manufacturing and biological systems. The research work mainly focuses on reaction modeling, optimization, and control using a deep learning-based approaches, and the work mainly concentrates on deep reinforcement learning (DRL). Yan Ma’s research also involves with data mining with bioinformatics. Large-scale data obtained in RNA-seq is analyzed using non-linear dimensionality reduction with Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP), followed by clustering analysis using k-Means and Hierarchical Density-Based Spatial Clustering with Noise (HDBSCAN). This report focuses on 3 case studies with DRL optimization control including a polymerization reaction control with deep reinforcement learning, a bioreactor optimization, and a fed-batch reaction optimization from a reactor at Dow Inc.. In the first study, a data-driven controller based on DRL is developed for a fed-batch polymerization reaction with multiple continuous manipulative variables with continuous control. The second case study is the modeling and optimization of a bioreactor. In this study, a data-driven reaction model is developed using Artificial Neural Network (ANN) to simulate the growth curve and bio-product accumulation of cyanobacteria Plectonema. Then a DRL control agent that optimizes the daily nutrient input is applied to maximize the yield of valuable bio-product C-phycocyanin. C-phycocyanin yield is increased by 52.1% compared to a control group with the same total nutrient content in experimental validation. The third case study is employing the data-driven control scheme for optimization of a reactor from Dow Inc, where a DRL-based optimization framework is established for the optimization of the Multi-Input, Multi-Output (MIMO) reaction system with reaction surrogate modeling. Yan Ma’s research overall shows promising directions for employing the emerging technologies of data-driven methods and deep learning in the field of manufacturing and biological systems. It is demonstrated that DRL is an efficient algorithm in the study of three different reaction systems with both stochastic and deterministic policies. Also, the use of data-driven models in reaction simulation also shows promising results with the non-linear nature and fast computational speed of the neural network models

    Heterogeneous Multi-Layered Network Model for Omics Data Integration and Analysis

    Get PDF
    Advances in next-generation sequencing and high-throughput techniques have enabled the generation of vast amounts of diverse omics data. These big data provide an unprecedented opportunity in biology, but impose great challenges in data integration, data mining, and knowledge discovery due to the complexity, heterogeneity, dynamics, uncertainty, and high-dimensionality inherited in the omics data. Network has been widely used to represent relations between entities in biological system, such as protein-protein interaction, gene regulation, and brain connectivity (i.e. network construction) as well as to infer novel relations given a reconstructed network (aka link prediction). Particularly, heterogeneous multi-layered network (HMLN) has proven successful in integrating diverse biological data for the representation of the hierarchy of biological system. The HMLN provides unparalleled opportunities but imposes new computational challenges on establishing causal genotype-phenotype associations and understanding environmental impact on organisms. In this review, we focus on the recent advances in developing novel computational methods for the inference of novel biological relations from the HMLN. We first discuss the properties of biological HMLN. Then we survey four categories of state-of-the-art methods (matrix factorization, random walk, knowledge graph, and deep learning). Thirdly, we demonstrate their applications to omics data integration and analysis. Finally, we outline strategies for future directions in the development of new HMLN models

    Using Neural Networks for Relation Extraction from Biomedical Literature

    Full text link
    Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1
    • …
    corecore