3,317 research outputs found

    Modelling Coastal Vulnerability: An integrated approach to coastal management using Earth Observation techniques in Belize

    Get PDF
    This thesis presents an adapted method to derive coastal vulnerability through the application of Earth Observation (EO) data in the quantification of forcing variables. A modelled assessment for vulnerability has been produced using the Coastal Vulnerability Index (CVI) approach developed by Gornitz (1991) and enhanced using Machine learning (ML) clustering. ML has been employed to divide the coastline based on the geotechnical conditions observed to establish relative vulnerability. This has been demonstrated to alleviate bias and enhanced the scalability of the approach – especially in areas with poor data coverage – a known hinderance to the CVI approach (Koroglu et al., 2019).Belize provides a demonstrator for this novel methodology due to limited existing data coverage and the recent removal of the Mesoamerican Reef from the International Union for Conservation of Nature (IUCN) List of World Heritage In Danger. A strong characterization of the coastal zone and associated pressures is paramount to support effective management and enhance resilience to ensure this status is retained.Areas of consistent vulnerability have been identified using the KMeans classifier; predominantly Caye Caulker and San Pedro. The ability to automatically scale to conditions in Belize has demonstrated disparities to vulnerability along the coastline and has provided more realistic estimates than the traditional CVI groups. Resulting vulnerability assessments have indicated that 19% of the coastline at the highest risk with a seaward distribution to high risk observed. Using data derived using Sentinel-2, this study has also increased the accuracy of existing habitat maps and enhanced survey coverage of uncharted areas.Results from this investigation have been situated within the ability to enhance community resilience through supporting regional policies. Further research should be completed to test the robust nature of this model through an application in regions with different geographic conditions and with higher resolution input datasets

    Data Requirements for Oceanic Processes in the Open Ocean, Coastal Zone, and Cryosphere

    Get PDF
    The type of information system that is needed to meet the requirements of ocean, coastal, and polar region users was examined. The requisite qualities of the system are: (1) availability, (2) accessibility, (3) responsiveness, (4) utility, (5) continuity, and (6) NASA participation. The system would not displace existing capabilities, but would have to integrate and expand the capabilities of existing systems and resolve the deficiencies that currently exist in producer-to-user information delivery options

    Assessment of Renewable Energy Resources with Remote Sensing

    Get PDF
    The development of renewable energy sources plays a fundamental role in the transition towards a low carbon economy. Considering that renewable energy resources have an intrinsic relationship with meteorological conditions and climate patterns, methodologies based on the remote sensing of the atmosphere are fundamental sources of information to support the energy sector in planning and operation procedures. This Special Issue is intended to provide a highly recognized international forum to present recent advances in remote sensing to data acquisition required by the energy sector. After a review, a total of eleven papers were accepted for publication. The contributions focus on solar, wind, and geothermal energy resource. This editorial presents a brief overview of each contribution.About the Editor .............................................. vii Fernando Ramos Martins Editorial for the Special Issue: Assessment of Renewable Energy Resources with Remote Sensing Reprinted from: Remote Sens. 2020, 12, 3748, doi:10.3390/rs12223748 ................. 1 André R. Gonçalves, Arcilan T. Assireu, Fernando R. Martins, Madeleine S. G. Casagrande, Enrique V. Mattos, Rodrigo S. Costa, Robson B. Passos, Silvia V. Pereira, Marcelo P. Pes, Francisco J. L. Lima and Enio B. Pereira Enhancement of Cloudless Skies Frequency over a Large Tropical Reservoir in Brazil Reprinted from: Remote Sens. 2020, 12, 2793, doi:10.3390/rs12172793 ................. 7 Anders V. Lindfors, Axel Hertsberg, Aku Riihelä, Thomas Carlund, Jörg Trentmann and Richard Müller On the Land-Sea Contrast in the Surface Solar Radiation (SSR) in the Baltic Region Reprinted from: Remote Sens. 2020, 12, 3509, doi:10.3390/rs12213509 ................. 33 Joaquín Alonso-Montesinos Real-Time Automatic Cloud Detection Using a Low-Cost Sky Camera Reprinted from: Remote Sens. 2020, 12, 1382, doi:10.3390/rs12091382 ................. 43 Román Mondragón, Joaquín Alonso-Montesinos, David Riveros-Rosas, Mauro Valdés, Héctor Estévez, Adriana E. González-Cabrera and Wolfgang Stremme Attenuation Factor Estimation of Direct Normal Irradiance Combining Sky Camera Images and Mathematical Models in an Inter-Tropical Area Reprinted from: Remote Sens. 2020, 12, 1212, doi:10.3390/rs12071212 ................. 61 Jinwoong Park, Jihoon Moon, Seungmin Jung and Eenjun Hwang Multistep-Ahead Solar Radiation Forecasting Scheme Based on the Light Gradient Boosting Machine: A Case Study of Jeju Island Reprinted from: Remote Sens. 2020, 12, 2271, doi:10.3390/rs12142271 ................. 79 Guojiang Xiong, Jing Zhang, Dongyuan Shi, Lin Zhu, Xufeng Yuan and Gang Yao Modified Search Strategies Assisted Crossover Whale Optimization Algorithm with Selection Operator for Parameter Extraction of Solar Photovoltaic Models Reprinted from: Remote Sens. 2019, 11, 2795, doi:10.3390/rs11232795 ................. 101 Alexandra I. Khalyasmaa, Stanislav A. Eroshenko, Valeriy A. Tashchilin, Hariprakash Ramachandran, Teja Piepur Chakravarthi and Denis N. Butusov Industry Experience of Developing Day-Ahead Photovoltaic Plant Forecasting System Based on Machine Learning Reprinted from: Remote Sens. 2020, 12, 3420, doi:10.3390/rs12203420 ................. 125 Ian R. Young, Ebru Kirezci and Agustinus Ribal The Global Wind Resource Observed by Scatterometer Reprinted from: Remote Sens. 2020, 12, 2920, doi:10.3390/rs12182920 ................. 147 Susumu Shimada, Jay Prakash Goit, Teruo Ohsawa, Tetsuya Kogaki and Satoshi Nakamura Coastal Wind Measurements Using a Single Scanning LiDAR Reprinted from: Remote Sens. 2020, 12, 1347, doi:10.3390/rs12081347 ................. 165 Cristina Sáez Blázquez, Pedro Carrasco García, Ignacio Martín Nieto, MiguelAngel ´ Maté-González, Arturo Farfán Martín and Diego González-Aguilera Characterizing Geological Heterogeneities for Geothermal Purposes through Combined Geophysical Prospecting Methods Reprinted from: Remote Sens. 2020, 12, 1948, doi:10.3390/rs12121948 ................. 189 Miktha Farid Alkadri, Francesco De Luca, Michela Turrin and Sevil Sariyildiz A Computational Workflow for Generating A Voxel-Based Design Approach Based on Subtractive Shading Envelopes and Attribute Information of Point Cloud Data Reprinted from: Remote Sens. 2020, 12, 2561, doi:10.3390/rs12162561 ................. 207Instituto do Ma

    Selected Papers from the 2018 IEEE International Workshop on Metrology for the Sea

    Get PDF
    This Special Issue is devoted to recent developments in instrumentation and measurement techniques applied to the marine field. ¶The sea is the medium that has allowed people to travel from one continent to another using vessels, even today despite the use of aircraft. It has also been acting as a great reservoir and source of food for all living beings. However, for many generations, it served as a landfill for depositing conventional and nuclear wastes, especially in its deep seabeds, and we are assisting in a race to exploit minerals and resources, different from foods, encompassed in it. Its health is a great challenge for the survival of all humanity since it is one of the most important environmental components targeted by global warming. ¶ As everyone may know, measuring is a step that generates substantial knowledge about a phenomenon or an asset, which is the basis for proposing correct solutions and making proper decisions. However, measurements in the sea environment pose unique difficulties and opportunities, which is made clear from the research results presented in this Special Issue

    Sediment transport near ship shoal for coastal restoration in the Louisiana Shelf: a model estimate of the year 2017-2018

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Liu, H., Xu, K., Ou, Y., Bales, R., Zang, Z., & Xue, Z. G. Sediment transport near ship shoal for coastal restoration in the Louisiana Shelf: a model estimate of the year 2017-2018. Water, 12(8), (2020): 2212, doi:10.3390/w12082212.Ship Shoal has been a high-priority target sand resource for dredging activities to restore the eroding barrier islands in LA, USA. The Caminada and Raccoon Island pits were dredged on and near Ship Shoal, which resulted in a mixed texture environment with the redistribution of cohesive mud and noncohesive sand. However, there is very limited knowledge about the source and transport process of suspended muddy sediments near Ship Shoal. The objective of this study is to apply the Regional Ocean Modeling System (ROMS) model to quantify the sediment sources and relative contribution of fluvial sediments with the estuary and shelf sediments delivered to Ship Shoal. The model results showed that suspended mud from the Atchafalaya River can transport and bypass Ship Shoal. Only a minimal amount of suspended mud from the Atchafalaya River can be delivered to Ship Shoal in a one-year time scale. Additionally, suspended mud from the inner shelf could be transported cross Ship Shoal and generate a thin mud layer, which is also considered as the primary sediment source infilling the dredge pits near Ship Shoal. Two hurricanes and one tropical storm during the year 2017–2018 changed the direction of the sediment transport flux near Ship Shoal and contributed to the pit infilling (less than 10% for this specific period). Our model also captured that the bottom sediment concentration in the Raccoon Island pit was relatively higher than the one in Caminada in the same period. Suspended mud sediment from the river, inner shelf, and bay can bypass or transport and deposit in the Caminada pit and Raccoon Island pit, which showed that the Caminada pit and Raccoon Island pits would not be considered as a renewable borrow area for future sand dredging activities for coastal restoration.Funding for this study was provided by the U.S. Department of the Interior, Bureau of Ocean Energy Management, Coastal Marine Institute, Washington DC, under Cooperative Agreement Numbers M16AC00018 and M17AC00019

    A SWOT analysis for offshore wind energy assessment using remote-sensing potential

    Get PDF
    The elaboration of a methodology for accurately assessing the potentialities of blue renewable energy sources is a key challenge among the current energy sustainability strategies all over the world. Consequentially, many researchers are currently working to improve the accuracy of marine renewable assessment methods. Nowadays, remote sensing (RSs) satellites are used to observe the environment in many fields and applications. These could also be used to identify regions of interest for future energy converter installations and to accurately identify areas with interesting potentials. Therefore, researchers can dramatically reduce the possibility of significant error. In this paper, a comprehensive SWOT (strengths, weaknesses, opportunities and threats) analysis is elaborated to assess RS satellite potentialities for offshore wind (OW) estimation. Sicily and Sardinia-the two biggest Italian islands with the highest potential for offshore wind energy generation-were selected as pilot areas. Since there is a lack of measuring instruments, such as cup anemometers and buoys in these areas (mainly due to their high economic costs), an accurate analysis was carried out to assess the marine energy potential from offshore wind. Since there are only limited options for further expanding the measurement over large areas, the use of satellites makes it easier to overcome this limitation. Undoubtedly, with the advent of new technologies for measuring renewable energy sources (RESs), there could be a significant energy transition in this area that requires a proper orientation of plans to examine the factors influencing these new technologies that can negatively affect most of the available potential. Satellite technology for identifying suitable areas of wind power plants could be a powerful tool that is constantly increasing in its applications but requires good planning to apply it in various projects. Proper planning is only possible with a better understanding of satellite capabilities and different methods for measuring available wind resources. To this end, a better understanding in interdisciplinary fields with the exchange of updated information between different sectors of development, such as universities and companies, will be most effective. In this context, by reviewing the available satellite technologies, the ability of this tool to measure the marine renewable energies (MREs) sector in large and small areas is considered. Secondly, an attempt is made to identify the strengths and weaknesses of using these types of tools and techniques that can help in various projects. Lastly, specific scenarios related to the application of such systems in existing and new developments are reviewed and discussed

    Image sensors for wave monitoring in shore protection: Characterization through a machine learning algorithm

    Get PDF
    Waves propagating on the water surface can be considered as propagating in a dispersive medium, where gravity and surface tension at the air–water interface act as restoring forces. The velocity at which energy is transported in water waves is defined by the group velocity. The paper reports the use of video‐camera observations to study the impact of water waves on an urban shore. The video‐monitoring system consists of two separate cameras equipped with progressive RGB CMOS sensors that allow 1080p HDTV video recording. The sensing system delivers video signals that are processed by a machine learning technique. The scope of the research is to identify features of water waves that cannot be normally observed. First, a conventional modelling was performed using data delivered by image sensors together with additional data such as temperature, and wind speed, measured with dedicated sensors. Stealth waves are detected, as are the inverting phenomena encompassed in waves. This latter phenomenon can be detected only through machine learning. This double approach allows us to prevent extreme events that can take place in offshore and onshore areas

    Contribution of remote sensing technologies to a holistic coastal and marine environmental management framework: a review

    Get PDF
    Coastal and marine management require the evaluation of multiple environmental threats and issues. However, there are gaps in the necessary data and poor access or dissemination of existing data in many countries around the world. This research identifies how remote sensing can contribute to filling these gaps so that environmental agencies, such as the United Nations Environmental Programme, European Environmental Agency, and International Union for Conservation of Nature, can better implement environmental directives in a cost-e ective manner. Remote sensing (RS) techniques generally allow for uniform data collection, with common acquisition and reporting methods, across large areas. Furthermore, these datasets are sometimes open-source, mainly when governments finance satellite missions. Some of these data can be used in holistic, coastal and marine environmental management frameworks, such as the DAPSI(W)R(M) framework (Drivers–Activities–Pressures–State changes–Impacts (on Welfare)–Responses (as Measures), an updated version of Drivers–Pressures–State–Impact–Responses. The framework is a useful and holistic problem-structuring framework that can be used to assess the causes, consequences, and responses to change in the marine environment. Six broad classifications of remote data collection technologies are reviewed for their potential contribution to integrated marine management, including Satellite-based Remote Sensing, Aerial Remote Sensing, Unmanned Aerial Vehicles, Unmanned Surface Vehicles, Unmanned Underwater Vehicles, and Static Sensors. A significant outcome of this study is practical inputs into each component of the DAPSI(W)R(M) framework. The RS applications are not expected to be all-inclusive; rather, they provide insight into the current use of the framework as a foundation for developing further holistic resource technologies for management strategies in the future. A significant outcome of this research will deliver practical insights for integrated coastal and marine management and demonstrate the usefulness of RS to support the implementation of environmental goals, descriptors, targets, and policies, such as theWater Framework Directive, Marine Strategy Framework Directive, Ocean Health Index, and United Nations Sustainable Development Goals. Additionally, the opportunities and challenges of these technologies are discussed.Murray Foundation: 25.26022020info:eu-repo/semantics/publishedVersio

    Satellite data for the offshore renewable energy sector: Synergies and innovation opportunities

    Get PDF
    Can satellite data be used to address challenges currently faced by the Offshore Renewable Energy (ORE) sector? What benefit can satellite observations bring to resource assessment and maintenance of ORE farms? Can satellite observations be used to assess the environmental impact of offshore renewables leading towards a more sustainable ORE sector? This review paper faces these questions presenting a holistic view of the current interactions between satellite and ORE sectors, and future needs to make this partnership grow. The aim of the work is to start the conversation between these sectors by establishing a common ground. We present offshore needs and satellite technology limitations, as well as potential opportunities and areas of growth. To better understand this, the reader is guided through the history, current developments, challenges and future of offshore wind, tidal and wave energy technologies. Then, an overview on satellite observations for ocean applications is given, covering types of instruments and how they are used to provide different metocean variables, satellite performance, and data processing and integration. Past, present and future satellite missions are also discussed. Finally, the paper focuses on innovation opportunities and the potential of synergies between the ORE and satellite sectors. Specifically, we pay attention to improvements that satellite observations could bring to standard measurement techniques: assessing uncertainty, wind, tidal and wave conditions forecast, as well as environmental monitoring from space. Satellite–enabled measurement of ocean physical processes and applications for fisheries, mammals and birds, and habitat change, are also discussed in depth
    corecore