68,911 research outputs found

    Can neural networks do arithmetic? A survey on the elementary numerical skills of state-of-the-art deep learning models

    Full text link
    Creating learning models that can exhibit sophisticated reasoning skills is one of the greatest challenges in deep learning research, and mathematics is rapidly becoming one of the target domains for assessing scientific progress in this direction. In the past few years there has been an explosion of neural network architectures, data sets, and benchmarks specifically designed to tackle mathematical problems, reporting notable success in disparate fields such as automated theorem proving, numerical integration, and discovery of new conjectures or matrix multiplication algorithms. However, despite these impressive achievements it is still unclear whether deep learning models possess an elementary understanding of quantities and symbolic numbers. In this survey we critically examine the recent literature, concluding that even state-of-the-art architectures often fall short when probed with relatively simple tasks designed to test basic numerical and arithmetic knowledge

    Automatic differentiation in machine learning: a survey

    Get PDF
    Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learning. Automatic differentiation (AD), also called algorithmic differentiation or simply "autodiff", is a family of techniques similar to but more general than backpropagation for efficiently and accurately evaluating derivatives of numeric functions expressed as computer programs. AD is a small but established field with applications in areas including computational fluid dynamics, atmospheric sciences, and engineering design optimization. Until very recently, the fields of machine learning and AD have largely been unaware of each other and, in some cases, have independently discovered each other's results. Despite its relevance, general-purpose AD has been missing from the machine learning toolbox, a situation slowly changing with its ongoing adoption under the names "dynamic computational graphs" and "differentiable programming". We survey the intersection of AD and machine learning, cover applications where AD has direct relevance, and address the main implementation techniques. By precisely defining the main differentiation techniques and their interrelationships, we aim to bring clarity to the usage of the terms "autodiff", "automatic differentiation", and "symbolic differentiation" as these are encountered more and more in machine learning settings.Comment: 43 pages, 5 figure

    Robust Computer Algebra, Theorem Proving, and Oracle AI

    Get PDF
    In the context of superintelligent AI systems, the term "oracle" has two meanings. One refers to modular systems queried for domain-specific tasks. Another usage, referring to a class of systems which may be useful for addressing the value alignment and AI control problems, is a superintelligent AI system that only answers questions. The aim of this manuscript is to survey contemporary research problems related to oracles which align with long-term research goals of AI safety. We examine existing question answering systems and argue that their high degree of architectural heterogeneity makes them poor candidates for rigorous analysis as oracles. On the other hand, we identify computer algebra systems (CASs) as being primitive examples of domain-specific oracles for mathematics and argue that efforts to integrate computer algebra systems with theorem provers, systems which have largely been developed independent of one another, provide a concrete set of problems related to the notion of provable safety that has emerged in the AI safety community. We review approaches to interfacing CASs with theorem provers, describe well-defined architectural deficiencies that have been identified with CASs, and suggest possible lines of research and practical software projects for scientists interested in AI safety.Comment: 15 pages, 3 figure

    Automated Knowledge Discovery using Neural Networks

    Get PDF
    The natural world is known to consistently abide by scientific laws that can be expressed concisely in mathematical terms, including differential equations. To understand the patterns that define these scientific laws, it is necessary to discover and solve these mathematical problems after making observations and collecting data on natural phenomena. While artificial neural networks are powerful black-box tools for automating tasks related to intelligence, the solutions we seek are related to the concise and interpretable form of symbolic mathematics. In this work, we focus on the idea of a symbolic function learner, or SFL. A symbolic function learner can be any algorithm that is able to produce a symbolic mathematical expression that aims to optimize a given objective function. By choosing different objective functions, the SFL can be tuned to handle different learning tasks. We present a model for an SFL that is based on neural networks and can be trained using deep learning. We then use this SFL to approach the computational task of automating discovery of scientific knowledge in three ways. We first apply our symbolic function learner as a tool for symbolic regression, a curve-fitting problem that has traditionally been approached using genetic evolution algorithms. We show that our SFL performs competitively in comparison to genetic algorithms and neural network regressors on a sample collection of regression instances. We also reframe the problem of learning differential equations as a task in symbolic regression, and use our SFL to rediscover some equations from classical physics from data. We next present a machine-learning based method for solving differential equations symbolically. When neural networks are used to solve differential equations, they usually produce solutions in the form of black-box functions that are not directly mathematically interpretable. We introduce a method for generating symbolic expressions to solve differential equations while leveraging deep learning training methods. Unlike existing methods, our system does not require learning a language model over symbolic mathematics, making it scalable, compact, and easily adaptable for a variety of tasks and configurations. The system is designed to always return a valid symbolic formula, generating a useful approximation when an exact analytic solution to a differential equation is not or cannot be found. We demonstrate through examples the way our method can be applied on a number of differential equations that are rooted in the natural sciences, often obtaining symbolic approximations that are useful or insightful. Furthermore, we show how the system can be effortlessly generalized to find symbolic solutions to other mathematical tasks, including integration and functional equations. We then introduce a novel method for discovering implicit relationships between variables in structured datasets in an unsupervised way. Rather than explicitly designating a causal relationship between input and output variables, our method finds mathematical relationships between variables without treating any variable as distinguished from any other. As a result, properties about the data itself can be discovered, rather than rules for predicting one variable from the others. We showcase examples of our method in the domain of geometry, demonstrating how we can re-discover famous geometric identities automatically from artificially generated data. In total, this thesis aims to strengthen the connection between neural networks and problems in symbolic mathematics. Our proposed SFL is the main tool that we show can be applied to a variety of tasks, including but not limited to symbolic regression. We show how using this approach to symbolic function learning paves the way for future developments in automated scientific knowledge discovery
    • …
    corecore