1,206 research outputs found

    Enhancing Perceptual Attributes with Bayesian Style Generation

    Full text link
    Deep learning has brought an unprecedented progress in computer vision and significant advances have been made in predicting subjective properties inherent to visual data (e.g., memorability, aesthetic quality, evoked emotions, etc.). Recently, some research works have even proposed deep learning approaches to modify images such as to appropriately alter these properties. Following this research line, this paper introduces a novel deep learning framework for synthesizing images in order to enhance a predefined perceptual attribute. Our approach takes as input a natural image and exploits recent models for deep style transfer and generative adversarial networks to change its style in order to modify a specific high-level attribute. Differently from previous works focusing on enhancing a specific property of a visual content, we propose a general framework and demonstrate its effectiveness in two use cases, i.e. increasing image memorability and generating scary pictures. We evaluate the proposed approach on publicly available benchmarks, demonstrating its advantages over state of the art methods.Comment: ACCV-201

    ResMem-Net: memory based deep CNN for image memorability estimation

    Get PDF
    Image memorability is a very hard problem in image processing due to its subjective nature. But due to the introduction of Deep Learning and the large availability of data and GPUs, great strides have been made in predicting the memorability of an image. In this paper, we propose a novel deep learning architecture called ResMem-Net that is a hybrid of LSTM and CNN that uses information from the hidden layers of the CNN to compute the memorability score of an image. The intermediate layers are important for predicting the output because they contain information about the intrinsic properties of the image. The proposed architecture automatically learns visual emotions and saliency, shown by the heatmaps generated using the GradRAM technique. We have also used the heatmaps and results to analyze and answer one of the most important questions in image memorability: ‘‘What makes an image memorable?“. The model is trained and evaluated using the publicly available Large-scale Image Memorability dataset (LaMem) from MIT. The results show that the model achieves a rank correlation of 0.679 and a mean squared error of 0.011, which is better than the current state-of-the-art models and is close to human consistency (p = 0.68). The proposed architecture also has a significantly low number of parameters compared to the state-of-the-art architecture, making it memory efficient and suitable for production

    How to Make an Image More Memorable? A Deep Style Transfer Approach

    Full text link
    Recent works have shown that it is possible to automatically predict intrinsic image properties like memorability. In this paper, we take a step forward addressing the question: "Can we make an image more memorable?". Methods for automatically increasing image memorability would have an impact in many application fields like education, gaming or advertising. Our work is inspired by the popular editing-by-applying-filters paradigm adopted in photo editing applications, like Instagram and Prisma. In this context, the problem of increasing image memorability maps to that of retrieving "memorabilizing" filters or style "seeds". Still, users generally have to go through most of the available filters before finding the desired solution, thus turning the editing process into a resource and time consuming task. In this work, we show that it is possible to automatically retrieve the best style seeds for a given image, thus remarkably reducing the number of human attempts needed to find a good match. Our approach leverages from recent advances in the field of image synthesis and adopts a deep architecture for generating a memorable picture from a given input image and a style seed. Importantly, to automatically select the best style a novel learning-based solution, also relying on deep models, is proposed. Our experimental evaluation, conducted on publicly available benchmarks, demonstrates the effectiveness of the proposed approach for generating memorable images through automatic style seed selectionComment: Accepted at ACM ICMR 201
    • …
    corecore