5,939 research outputs found

    MULTI-DIMENSIONAL PROFILING OF CYBER THREATS FOR LARGE-SCALE NETWORKS

    Get PDF
    Current multi-domain command and control computer networks require significant oversight to ensure acceptable levels of security. Firewalls are the proactive security management tool at the network’s edge to determine malicious and benign traffic classes. This work aims to develop machine learning algorithms through deep learning and semi-supervised clustering, to enable the profiling of potential threats through network traffic analysis within large-scale networks. This research accomplishes these objectives by analyzing enterprise network data at the packet level using deep learning to classify traffic patterns. In addition, this work examines the efficacy of several machine learning model types and multiple imbalanced data handling techniques. This work also incorporates packet streams for identifying and classifying user behaviors. Tests of the packet classification models demonstrated that deep learning is sensitive to malicious traffic but underperforms in identifying allowed traffic compared to traditional algorithms. However, imbalanced data handling techniques provide performance benefits to some deep learning models. Conversely, semi-supervised clustering accurately identified and classified multiple user behaviors. These models provide an automated tool to learn and predict future traffic patterns. Applying these techniques within large-scale networks detect abnormalities faster and gives network operators greater awareness of user traffic.Outstanding ThesisCaptain, United States Marine CorpsApproved for public release. Distribution is unlimited

    A technical review and comparative analysis of machine learning techniques for intrusion detection systems in MANET

    Get PDF
    Machine learning techniques are being widely used to develop an intrusion detection system (IDS) for detecting and classifying cyber attacks at the network-level and the host-level in a timely and automatic manner. However, Traditional Intrusion Detection Systems (IDS), based on traditional machine learning methods, lacks reliability and accuracy. Instead of the traditional machine learning used in previous researches, we think deep learning has the potential to perform better in extracting features of massive data considering the massive cyber traffic in real life. Generally Mobile Ad Hoc Networks have given the low physical security for mobile devices, because of the properties such as node mobility, lack of centralized management and limited bandwidth. To tackle these security issues, traditional cryptography schemes can-not completely safeguard MANETs in terms of novel threats and vulnerabilities, thus by applying Deep learning methods techniques in IDS are capable of adapting the dynamic environments of MANETs and enables the system to make decisions on intrusion while continuing to learn about their mobile environment. An IDS in MANET is a sensoring mechanism that monitors nodes and network activities in order to detect malicious actions and malicious attempt performed by Intruders. Recently, multiple deep learning approaches have been proposed to enhance the performance of intrusion detection system. In this paper, we made a systematic comparison of three models, Inceprtion architecture convolutional neural network Inception-CNN, Bidirectional long short-term memory (BLSTM) and deep belief network (DBN) on the deep learning-based intrusion detection systems, using the NSL-KDD dataset containing information about intrusion and regular network connections, the goal is to provide basic guidance on the choice of deep learning methods in MANET

    Applications of Machine Learning to Threat Intelligence, Intrusion Detection and Malware

    Get PDF
    Artificial Intelligence (AI) and Machine Learning (ML) are emerging technologies with applications to many fields. This paper is a survey of use cases of ML for threat intelligence, intrusion detection, and malware analysis and detection. Threat intelligence, especially attack attribution, can benefit from the use of ML classification. False positives from rule-based intrusion detection systems can be reduced with the use of ML models. Malware analysis and classification can be made easier by developing ML frameworks to distill similarities between the malicious programs. Adversarial machine learning will also be discussed, because while ML can be used to solve problems or reduce analyst workload, it also introduces new attack surfaces

    A traffic classification method using machine learning algorithm

    Get PDF
    Applying concepts of attack investigation in IT industry, this idea has been developed to design a Traffic Classification Method using Data Mining techniques at the intersection of Machine Learning Algorithm, Which will classify the normal and malicious traffic. This classification will help to learn about the unknown attacks faced by IT industry. The notion of traffic classification is not a new concept; plenty of work has been done to classify the network traffic for heterogeneous application nowadays. Existing techniques such as (payload based, port based and statistical based) have their own pros and cons which will be discussed in this literature later, but classification using Machine Learning techniques is still an open field to explore and has provided very promising results up till now

    Detection and Prediction of Distributed Denial of Service Attacks using Deep Learning

    Get PDF
    Distributed denial of service attacks threaten the security and health of the Internet. These attacks continue to grow in scale and potency. Remediation relies on up-to-date and accurate attack signatures. Signature-based detection is relatively inexpensive computationally. Yet, signatures are inflexible when small variations exist in the attack vector. Attackers exploit this rigidity by altering their attacks to bypass the signatures. The constant need to stay one step ahead of attackers using signatures demonstrates a clear need for better methods of detecting DDoS attacks. In this research, we examine the application of machine learning models to real network data for the purpose of classifying attacks. During training, the models build a representation of their input data. This eliminates any reliance on attack signatures and allows for accurate classification of attacks even when they are slightly modified to evade detection. In the course of our research, we found a significant problem when applying conventional machine learning models. Network traffic, whether benign or malicious, is temporal in nature. This results in differences in its characteristics between any significant time span. These differences cause conventional models to fail at classifying the traffic. We then turned to deep learning models. We obtained a significant improvement in performance, regardless of time span. In this research, we also introduce a new method of transforming traffic data into spectrogram images. This technique provides a way to better distinguish different types of traffic. Finally, we introduce a framework for embedding attack detection in real-world applications

    Multimodal Approach for Malware Detection

    Get PDF
    Although malware detection is a very active area of research, few works were focused on using physical properties (e.g., power consumption) and multimodal features for malware detection. We designed an experimental testbed that allowed us to run samples of malware and non-malicious software applications and to collect power consumption, network traffic, and system logs data, and subsequently to extract dynamic behavioral-based features. We also extracted code-based static features of both malware and non-malicious software applications. These features were used for malware detection based on: feature level fusion using power consumption and network traffic data, feature level fusion using network traffic data and system logs, and multimodal feature level and decision level fusion. The contributions when using feature level fusion of power consumption and network traffic data are: (1) We focused on detecting real malware using the extracted dynamic behavioral features (both power-based and network traffic-based) and supervised machine learning algorithms, which has not been done by any of the prior works. (2) We ran a large number of machine learning experiments, which allowed us to identify the best performing learner, DC voltage rails that led to the best malware detection performance, and the subset of features that are the best predictors for malware detection. (3) The comparison of malware detection performance was done using a comprehensive set of metrics that reflect different aspects of the quality of malware detection. In the case of the feature level fusion using network traffic data and system logs, the contributions are: (1) Most of the previous works that have used network flows-based features have done classification of the network traffic, while our focus was on classifying the software running in a machine as malware and non-malicious software using the extracted dynamic behavioral features. (2) We experimented with different sizes of the training set (i.e., 90%, 75%, 50%, and 25% of the data) and found that smaller training sets produced very good classification results. This aspect of our work has a practical value because the manual labeling of the training set is a tedious and time consuming process. In this dissertation we present a multimodal deep learning neural network that integrates different modalities (i.e., power consumption, system logs, network traffic, and code-based static data) using decision level fusion. We evaluated the performance of each modality individually, when using feature level fusion, and when using decision level fusion. The contributions of our multimodal approach are as follow: (1) Collecting data from different modalities allowed us to develop a multimodal approach to malware detection, which has not been widely explored by prior works. Even more, none of the previous works compared the performance of feature level fusion with decision level fusion, which is explored in this dissertation. (2) We proposed a multimodal decision level fusion malware detection approach using a deep neural network and compared its performance with the performance of feature level fusion approaches based on deep neural network and standard supervised machine learning algorithms (i.e., Random Forest, J48, JRip, PART, Naive Bayes, and SMO)
    • …
    corecore