15,410 research outputs found

    Vision-based Human Fall Detection Systems using Deep Learning: A Review

    Full text link
    Human fall is one of the very critical health issues, especially for elders and disabled people living alone. The number of elder populations is increasing steadily worldwide. Therefore, human fall detection is becoming an effective technique for assistive living for those people. For assistive living, deep learning and computer vision have been used largely. In this review article, we discuss deep learning (DL)-based state-of-the-art non-intrusive (vision-based) fall detection techniques. We also present a survey on fall detection benchmark datasets. For a clear understanding, we briefly discuss different metrics which are used to evaluate the performance of the fall detection systems. This article also gives a future direction on vision-based human fall detection techniques

    Home-based physical therapy with an interactive computer vision system

    Full text link
    In this paper, we present ExerciseCheck. ExerciseCheck is an interactive computer vision system that is sufficiently modular to work with different sources of human pose estimates, i.e., estimates from deep or traditional models that interpret RGB or RGB-D camera input. In a pilot study, we first compare the pose estimates produced by four deep models based on RGB input with those of the MS Kinect based on RGB-D data. The results indicate a performance gap that required us to choose the MS Kinect when we tested ExerciseCheck with Parkinson’s disease patients in their homes. ExerciseCheck is capable of customizing exercises, capturing exercise information, evaluating patient performance, providing therapeutic feedback to the patient and the therapist, checking the progress of the user over the course of the physical therapy, and supporting the patient throughout this period. We conclude that ExerciseCheck is a user-friendly computer vision application that can assist patients by providing motivation and guidance to ensure correct execution of the required exercises. Our results also suggest that while there has been considerable progress in the field of pose estimation using deep learning, current deep learning models are not fully ready to replace RGB-D sensors, especially when the exercises involved are complex, and the patient population being accounted for has to be carefully tracked for its “active range of motion.”Published versio

    Future Person Localization in First-Person Videos

    Full text link
    We present a new task that predicts future locations of people observed in first-person videos. Consider a first-person video stream continuously recorded by a wearable camera. Given a short clip of a person that is extracted from the complete stream, we aim to predict that person's location in future frames. To facilitate this future person localization ability, we make the following three key observations: a) First-person videos typically involve significant ego-motion which greatly affects the location of the target person in future frames; b) Scales of the target person act as a salient cue to estimate a perspective effect in first-person videos; c) First-person videos often capture people up-close, making it easier to leverage target poses (e.g., where they look) for predicting their future locations. We incorporate these three observations into a prediction framework with a multi-stream convolution-deconvolution architecture. Experimental results reveal our method to be effective on our new dataset as well as on a public social interaction dataset.Comment: Accepted to CVPR 201

    Multimodal Signal Processing and Learning Aspects of Human-Robot Interaction for an Assistive Bathing Robot

    Full text link
    We explore new aspects of assistive living on smart human-robot interaction (HRI) that involve automatic recognition and online validation of speech and gestures in a natural interface, providing social features for HRI. We introduce a whole framework and resources of a real-life scenario for elderly subjects supported by an assistive bathing robot, addressing health and hygiene care issues. We contribute a new dataset and a suite of tools used for data acquisition and a state-of-the-art pipeline for multimodal learning within the framework of the I-Support bathing robot, with emphasis on audio and RGB-D visual streams. We consider privacy issues by evaluating the depth visual stream along with the RGB, using Kinect sensors. The audio-gestural recognition task on this new dataset yields up to 84.5%, while the online validation of the I-Support system on elderly users accomplishes up to 84% when the two modalities are fused together. The results are promising enough to support further research in the area of multimodal recognition for assistive social HRI, considering the difficulties of the specific task. Upon acceptance of the paper part of the data will be publicly available
    • …
    corecore