3,191 research outputs found

    RETINAL OCT IMAGE ANALYSIS USING DEEP LEARNING

    Get PDF
    Optical coherence tomography (OCT) is a noninvasive imaging modality which uses low-coherence light waves to take cross-sectional images of optical scattering media. OCT has been widely used in diagnosing retinal and neural diseases by imaging the human retina. The thicknesses of retinal layers are important biomarkers for neurological diseases like multiple sclerosis (MS). The peripapillary retinal nerve fiber layer (pRNFL) and ganglion cell plus inner plexiform layer (GCIP) thickness can be used to assess the global disease progression of MS patients. Automated OCT image analysis tools are critical for quantitatively monitoring disease progression and exploring biomarkers. With the development of more powerful computational resources, deep learning based methods have achieved much better performance in accuracy, speed, and algorithm flexibility for many image analysis tasks. However, without task-specific modifications, these emerging deep learning methods are not satisfactory if directly applied to tasks like retinal layer segmentation. In this thesis, we present a set of novel deep learning based methods for OCT image analysis. Specifically, we focus on automated retinal layer segmentation from macular OCT images. The first problem we address is that existing deep learning methods do not incorporate explicit anatomical rules and cannot guarantee the layer segmentation hierarchy~(pixels of the upper layers should have no overlap or gap with pixels of layers beneath it). To solve this, we developed an efficient fully convolutional network to generate structured layer surfaces with correct topology that is also able to perform retinal lesion~(cysts or edema) segmentation. The second problem we addressed is that the segmentation uncertainty reduces the sensitivity of detecting mild retinal changes in MS patients over time. To solve this, we developed a longitudinal deep learning pipeline that considers both inter-slice and longitudinal segmentation priors to achieve a more consistent segmentation for monitoring patient-specific retinal changes. The third problem we addressed is that the performance of the deep learning models will degrade when test data is generated from different scanners~(domain shift). We address this problem by developing a novel test-time domain adaptation method. Different from existing solutions, our model can dynamically adapt to each test subject during inference without time-consuming retraining. Our deep networks achieved state-of-the-art segmentation accuracy, speed, and flexibility compared to the existing methods

    Computational Methods for Image Acquisition and Analysis with Applications in Optical Coherence Tomography

    Get PDF
    The computational approach to image acquisition and analysis plays an important role in medical imaging and optical coherence tomography (OCT). This thesis is dedicated to the development and evaluation of algorithmic solutions for better image acquisition and analysis with a focus on OCT retinal imaging. For image acquisition, we first developed, implemented, and systematically evaluated a compressive sensing approach for image/signal acquisition for single-pixel camera architectures and an OCT system. Our evaluation outcome provides a detailed insight into implementing compressive data acquisition of those imaging systems. We further proposed a convolutional neural network model, LSHR-Net, as the first deep-learning imaging solution for the single-pixel camera. This method can achieve better accuracy, hardware-efficient image acquisition and reconstruction than the conventional compressive sensing algorithm. Three image analysis methods were proposed to achieve retinal OCT image analysis with high accuracy and robustness. We first proposed a framework for healthy retinal layer segmentation. Our framework consists of several image processing algorithms specifically aimed at segmenting a total of 12 thin retinal cell layers, outperforming other segmentation methods. Furthermore, we proposed two deep-learning-based models to segment retinal oedema lesions in OCT images, with particular attention on processing small-scale datasets. The first model leverages transfer learning to implement oedema segmentation and achieves better accuracy than comparable methods. Based on the meta-learning concept, a second model was designed to be a solution for general medical image segmentation. The results of this work indicate that our model can be applied to retinal OCT images and other small-scale medical image data, such as skin cancer, demonstrated in this thesis

    RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional Network for Retinal OCT Fluid Segmentation

    Full text link
    Optical coherence tomography (OCT) helps ophthalmologists assess macular edema, accumulation of fluids, and lesions at microscopic resolution. Quantification of retinal fluids is necessary for OCT-guided treatment management, which relies on a precise image segmentation step. As manual analysis of retinal fluids is a time-consuming, subjective, and error-prone task, there is increasing demand for fast and robust automatic solutions. In this study, a new convolutional neural architecture named RetiFluidNet is proposed for multi-class retinal fluid segmentation. The model benefits from hierarchical representation learning of textural, contextual, and edge features using a new self-adaptive dual-attention (SDA) module, multiple self-adaptive attention-based skip connections (SASC), and a novel multi-scale deep self supervision learning (DSL) scheme. The attention mechanism in the proposed SDA module enables the model to automatically extract deformation-aware representations at different levels, and the introduced SASC paths further consider spatial-channel interdependencies for concatenation of counterpart encoder and decoder units, which improve representational capability. RetiFluidNet is also optimized using a joint loss function comprising a weighted version of dice overlap and edge-preserved connectivity-based losses, where several hierarchical stages of multi-scale local losses are integrated into the optimization process. The model is validated based on three publicly available datasets: RETOUCH, OPTIMA, and DUKE, with comparisons against several baselines. Experimental results on the datasets prove the effectiveness of the proposed model in retinal OCT fluid segmentation and reveal that the suggested method is more effective than existing state-of-the-art fluid segmentation algorithms in adapting to retinal OCT scans recorded by various image scanning instruments.Comment: 11 pages, Early Access Version, IEEE Transactions on Medical Imagin

    Correction of Retinal Nerve Fiber Layer Thickness Measurement on Spectral-Domain Optical Coherence Tomographic Images Using U-net Architecture

    Get PDF
    Purpose: In this study, an algorithm based on deep learning was presented to reduce the retinal nerve fiber layer (RNFL) segmentation errors in spectral domain optical coherence tomography (SD-OCT) scans using ophthalmologists’ manual segmentation as a reference standard. Methods: In this study, we developed an image segmentation network based on deep learning to automatically identify the RNFL thickness from B-scans obtained with SD-OCT. The scans were collected from Farabi Eye Hospital (500 B-scans were used for training, while 50 were used for testing). To remove the speckle noise from the images, preprocessing was applied before training, and postprocessing was performed to fill any discontinuities that might exist. Afterward, output masks were analyzed for their average thickness. Finally, the calculation of mean absolute error between predicted and ground truth RNFL thickness was performed. Results: Based on the testing database, SD-OCT segmentation had an average dice similarity coefficient of 0.91, and thickness estimation had a mean absolute error of 2.23 ± 2.1 μm. As compared to conventional OCT software algorithms, deep learning predictions were better correlated with the best available estimate during the test period (r2 = 0.99 vs r2 = 0.88, respectively; P < 0.001). Conclusion: Our experimental results demonstrate effective and precise segmentation of the RNFL layer with the coefficient of 0.91 and reliable thickness prediction with MAE 2.23 ± 2.1 μm in SD-OCT B-scans. Performance is comparable with human annotation of the RNFL layer and other algorithms according to the correlation coefficient of 0.99 and 0.88, respectively, while artifacts and errors are evident
    corecore