10,208 research outputs found

    A Kalman Filter based Low Complexity Throughput Prediction Algorithm for 5G Cellular Networks

    Full text link
    Throughput Prediction is one of the primary preconditions for the uninterrupted operation of several network-aware mobile applications, namely video streaming. Recent works have advocated using Machine Learning (ML) and Deep Learning (DL) for cellular network throughput prediction. In contrast, this work has proposed a low computationally complex simple solution which models the future throughput as a multiple linear regression of several present network parameters and present throughput. It then feeds the variance of prediction error and measurement error, which is inherent in any measurement setup but unaccounted for in existing works, to a Kalman filter-based prediction-correction approach to obtain the optimal estimates of the future throughput. Extensive experiments across seven publicly available 5G throughput datasets for different prediction window lengths have shown that the proposed method outperforms the baseline ML and DL algorithms by delivering more accurate results within a shorter timeframe for inferencing and retraining. Furthermore, in comparison to its ML and DL counterparts, the proposed throughput prediction method is also found to deliver higher QoE to both streaming and live video users when used in conjunction with popular Model Predictive Control (MPC) based adaptive bitrate streaming algorithms.Comment: 13 pages, 14 figure

    MANSY: Generalizing Neural Adaptive Immersive Video Streaming With Ensemble and Representation Learning

    Full text link
    The popularity of immersive videos has prompted extensive research into neural adaptive tile-based streaming to optimize video transmission over networks with limited bandwidth. However, the diversity of users' viewing patterns and Quality of Experience (QoE) preferences has not been fully addressed yet by existing neural adaptive approaches for viewport prediction and bitrate selection. Their performance can significantly deteriorate when users' actual viewing patterns and QoE preferences differ considerably from those observed during the training phase, resulting in poor generalization. In this paper, we propose MANSY, a novel streaming system that embraces user diversity to improve generalization. Specifically, to accommodate users' diverse viewing patterns, we design a Transformer-based viewport prediction model with an efficient multi-viewport trajectory input output architecture based on implicit ensemble learning. Besides, we for the first time combine the advanced representation learning and deep reinforcement learning to train the bitrate selection model to maximize diverse QoE objectives, enabling the model to generalize across users with diverse preferences. Extensive experiments demonstrate that MANSY outperforms state-of-the-art approaches in viewport prediction accuracy and QoE improvement on both trained and unseen viewing patterns and QoE preferences, achieving better generalization.Comment: This work has been submitted to the IEEE Transactions on Mobile Computing for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    QoE-Based Low-Delay Live Streaming Using Throughput Predictions

    Full text link
    Recently, HTTP-based adaptive streaming has become the de facto standard for video streaming over the Internet. It allows clients to dynamically adapt media characteristics to network conditions in order to ensure a high quality of experience, that is, minimize playback interruptions, while maximizing video quality at a reasonable level of quality changes. In the case of live streaming, this task becomes particularly challenging due to the latency constraints. The challenge further increases if a client uses a wireless network, where the throughput is subject to considerable fluctuations. Consequently, live streams often exhibit latencies of up to 30 seconds. In the present work, we introduce an adaptation algorithm for HTTP-based live streaming called LOLYPOP (Low-Latency Prediction-Based Adaptation) that is designed to operate with a transport latency of few seconds. To reach this goal, LOLYPOP leverages TCP throughput predictions on multiple time scales, from 1 to 10 seconds, along with an estimate of the prediction error distribution. In addition to satisfying the latency constraint, the algorithm heuristically maximizes the quality of experience by maximizing the average video quality as a function of the number of skipped segments and quality transitions. In order to select an efficient prediction method, we studied the performance of several time series prediction methods in IEEE 802.11 wireless access networks. We evaluated LOLYPOP under a large set of experimental conditions limiting the transport latency to 3 seconds, against a state-of-the-art adaptation algorithm from the literature, called FESTIVE. We observed that the average video quality is by up to a factor of 3 higher than with FESTIVE. We also observed that LOLYPOP is able to reach a broader region in the quality of experience space, and thus it is better adjustable to the user profile or service provider requirements.Comment: Technical Report TKN-16-001, Telecommunication Networks Group, Technische Universitaet Berlin. This TR updated TR TKN-15-00

    Bridge the Gap Between VQA and Human Behavior on Omnidirectional Video: A Large-Scale Dataset and a Deep Learning Model

    Full text link
    Omnidirectional video enables spherical stimuli with the 360Γ—180∘360 \times 180^ \circ viewing range. Meanwhile, only the viewport region of omnidirectional video can be seen by the observer through head movement (HM), and an even smaller region within the viewport can be clearly perceived through eye movement (EM). Thus, the subjective quality of omnidirectional video may be correlated with HM and EM of human behavior. To fill in the gap between subjective quality and human behavior, this paper proposes a large-scale visual quality assessment (VQA) dataset of omnidirectional video, called VQA-OV, which collects 60 reference sequences and 540 impaired sequences. Our VQA-OV dataset provides not only the subjective quality scores of sequences but also the HM and EM data of subjects. By mining our dataset, we find that the subjective quality of omnidirectional video is indeed related to HM and EM. Hence, we develop a deep learning model, which embeds HM and EM, for objective VQA on omnidirectional video. Experimental results show that our model significantly improves the state-of-the-art performance of VQA on omnidirectional video.Comment: Accepted by ACM MM 201
    • …
    corecore