10 research outputs found

    Self-pruning Graph Neural Network for Predicting Inflammatory Disease Activity in Multiple Sclerosis from Brain MR Images

    Full text link
    Multiple Sclerosis (MS) is a severe neurological disease characterized by inflammatory lesions in the central nervous system. Hence, predicting inflammatory disease activity is crucial for disease assessment and treatment. However, MS lesions can occur throughout the brain and vary in shape, size and total count among patients. The high variance in lesion load and locations makes it challenging for machine learning methods to learn a globally effective representation of whole-brain MRI scans to assess and predict disease. Technically it is non-trivial to incorporate essential biomarkers such as lesion load or spatial proximity. Our work represents the first attempt to utilize graph neural networks (GNN) to aggregate these biomarkers for a novel global representation. We propose a two-stage MS inflammatory disease activity prediction approach. First, a 3D segmentation network detects lesions, and a self-supervised algorithm extracts their image features. Second, the detected lesions are used to build a patient graph. The lesions act as nodes in the graph and are initialized with image features extracted in the first stage. Finally, the lesions are connected based on their spatial proximity and the inflammatory disease activity prediction is formulated as a graph classification task. Furthermore, we propose a self-pruning strategy to auto-select the most critical lesions for prediction. Our proposed method outperforms the existing baseline by a large margin (AUCs of 0.67 vs. 0.61 and 0.66 vs. 0.60 for one-year and two-year inflammatory disease activity, respectively). Finally, our proposed method enjoys inherent explainability by assigning an importance score to each lesion for the overall prediction. Code is available at https://github.com/chinmay5/ms_ida.gi

    INCEPTNET: Precise And Early Disease Detection Application For Medical Images Analyses

    Full text link
    In view of the recent paradigm shift in deep AI based image processing methods, medical image processing has advanced considerably. In this study, we propose a novel deep neural network (DNN), entitled InceptNet, in the scope of medical image processing, for early disease detection and segmentation of medical images in order to enhance precision and performance. We also investigate the interaction of users with the InceptNet application to present a comprehensive application including the background processes, and foreground interactions with users. Fast InceptNet is shaped by the prominent Unet architecture, and it seizes the power of an Inception module to be fast and cost effective while aiming to approximate an optimal local sparse structure. Adding Inception modules with various parallel kernel sizes can improve the network's ability to capture the variations in the scaled regions of interest. To experiment, the model is tested on four benchmark datasets, including retina blood vessel segmentation, lung nodule segmentation, skin lesion segmentation, and breast cancer cell detection. The improvement was more significant on images with small scale structures. The proposed method improved the accuracy from 0.9531, 0.8900, 0.9872, and 0.9881 to 0.9555, 0.9510, 0.9945, and 0.9945 on the mentioned datasets, respectively, which show outperforming of the proposed method over the previous works. Furthermore, by exploring the procedure from start to end, individuals who have utilized a trial edition of InceptNet, in the form of a complete application, are presented with thirteen multiple choice questions in order to assess the proposed method. The outcomes are evaluated through the means of Human Computer Interaction

    A Survey on Deep Learning in Medical Image Registration: New Technologies, Uncertainty, Evaluation Metrics, and Beyond

    Full text link
    Over the past decade, deep learning technologies have greatly advanced the field of medical image registration. The initial developments, such as ResNet-based and U-Net-based networks, laid the groundwork for deep learning-driven image registration. Subsequent progress has been made in various aspects of deep learning-based registration, including similarity measures, deformation regularizations, and uncertainty estimation. These advancements have not only enriched the field of deformable image registration but have also facilitated its application in a wide range of tasks, including atlas construction, multi-atlas segmentation, motion estimation, and 2D-3D registration. In this paper, we present a comprehensive overview of the most recent advancements in deep learning-based image registration. We begin with a concise introduction to the core concepts of deep learning-based image registration. Then, we delve into innovative network architectures, loss functions specific to registration, and methods for estimating registration uncertainty. Additionally, this paper explores appropriate evaluation metrics for assessing the performance of deep learning models in registration tasks. Finally, we highlight the practical applications of these novel techniques in medical imaging and discuss the future prospects of deep learning-based image registration

    Artifical intelligence in rectal cancer

    Get PDF
    corecore