4,618 research outputs found

    Integrated Optical Fiber Sensor for Simultaneous Monitoring of Temperature, Vibration, and Strain in High Temperature Environment

    Full text link
    Important high-temperature parts of an aero-engine, especially the power-related fuel system and rotor system, are directly related to the reliability and service life of the engine. The working environment of these parts is extremely harsh, usually overloaded with high temperature, vibration and strain which are the main factors leading to their failure. Therefore, the simultaneous measurement of high temperature, vibration, and strain is essential to monitor and ensure the safe operation of an aero-engine. In my thesis work, I have focused on the research and development of two new sensors for fuel and rotor systems of an aero-engine that need to withstand the same high temperature condition, typically at 900 °C or above, but with different requirements for vibration and strain measurement. Firstly, to meet the demand for high temperature operation, high vibration sensitivity, and high strain resolution in fuel systems, an integrated sensor based on two fiber Bragg gratings in series (Bi-FBG sensor) to simultaneously measure temperature, strain, and vibration is proposed and demonstrated. In this sensor, an L-shaped cantilever is introduced to improve the vibration sensitivity. By converting its free end displacement into a stress effect on the FBG, the sensitivity of the L-shaped cantilever is improved by about 400% compared with that of straight cantilevers. To compensate for the strain sensitivity of FBGs, a spring-beam strain sensitization structure is designed and the sensitivity is increased to 5.44 pm/με by concentrating strain deformation. A novel decoupling method ‘Steps Decoupling and Temperature Compensation (SDTC)’ is proposed to address the interference between temperature, vibration, and strain. A model of sensing characteristics and interference of different parameters is established to achieve accurate signal decoupling. Experimental tests have been performed and demonstrated the good performance of the sensor. Secondly, a sensor based on cascaded three fiber Fabry-Pérot interferometers in series (Tri-FFPI sensor) for multiparameter measurement is designed and demonstrated for engine rotor systems that require higher vibration frequencies and greater strain measurement requirements. In this sensor, the cascaded-FFPI structure is introduced to ensure high temperature and large strain simultaneous measurement. An FFPI with a cantilever for high vibration frequency measurement is designed with a miniaturized size and its geometric parameters optimization model is established to investigate the influencing factors of sensing characteristics. A cascaded-FFPI preparation method with chemical etching and offset fusion is proposed to maintain the flatness and high reflectivity of FFPIs’ surface, which contributes to the improvement of measurement accuracy. A new high-precision cavity length demodulation method is developed based on vector matching and clustering-competition particle swarm optimization (CCPSO) to improve the demodulation accuracy of cascaded-FFPI cavity lengths. By investigating the correlation relationship between the cascaded-FFPI spectral and multidimensional space, the cavity length demodulation is transformed into a search for the highest correlation value in space, solving the problem that the cavity length demodulation accuracy is limited by the resolution of spectral wavelengths. Different clustering and competition characteristics are designed in CCPSO to reduce the demodulation error by 87.2% compared with the commonly used particle swarm optimization method. Good performance and multiparameter decoupling have been successfully demonstrated in experimental tests

    A review of abnormal behavior detection in activities of daily living

    Get PDF
    Abnormal behavior detection (ABD) systems are built to automatically identify and recognize abnormal behavior from various input data types, such as sensor-based and vision-based input. As much as the attention received for ABD systems, the number of studies on ABD in activities of daily living (ADL) is limited. Owing to the increasing rate of elderly accidents in the home compound, ABD in ADL research should be given as much attention to preventing accidents by sending out signals when abnormal behavior such as falling is detected. In this study, we compare and contrast the formation of the ABD system in ADL from input data types (sensor-based input and vision-based input) to modeling techniques (conventional and deep learning approaches). We scrutinize the public datasets available and provide solutions for one of the significant issues: the lack of datasets in ABD in ADL. This work aims to guide new research to understand the field of ABD in ADL better and serve as a reference for future study of better Ambient Assisted Living with the growing smart home trend

    Machine Learning Research Trends in Africa: A 30 Years Overview with Bibliometric Analysis Review

    Full text link
    In this paper, a critical bibliometric analysis study is conducted, coupled with an extensive literature survey on recent developments and associated applications in machine learning research with a perspective on Africa. The presented bibliometric analysis study consists of 2761 machine learning-related documents, of which 98% were articles with at least 482 citations published in 903 journals during the past 30 years. Furthermore, the collated documents were retrieved from the Science Citation Index EXPANDED, comprising research publications from 54 African countries between 1993 and 2021. The bibliometric study shows the visualization of the current landscape and future trends in machine learning research and its application to facilitate future collaborative research and knowledge exchange among authors from different research institutions scattered across the African continent

    Implementation of number plate detection system for vehicle registration using IOT and recognition using CNN

    No full text
    In the intelligent transportation system the automatic license plate recognition and detection plays a very important role. This application could be used for traffic control security e-payment systems in the toll pay and parking. Many algorithms have been developed to force license plate detection and recognition and all have many advantages and flaws under different situations. With the advent and rise of deep learning concepts in various fields of artificial intelligence, computer vision has developed in leaps and bounds in terms of innovations and methods. Automatic License Plate Recognition has emerged as an effective method to automate the watch keeping process for traffic systems, parking fee structures, and police surveillance. License plate recognition (LPR) is a quite used and mature technology but much work is needed to be done in order to make it perfect. In recent years, the scientific community has made major advances in methodology and performance. This paper tries to aim at summarizing and analyzing various methodologies and progress in LPR in the deep learning era using IOT sensors. Hence, in this paper, an Automatic License Plate Detection and Recognition (ALPDR) system has been proposed having four steps namely License Plate Extraction, Image Pre-processing, Character Segmentation and Character Recognition. For the first three steps (extraction, pre-processing, and segmentation), unique methods have been proposed. As the character recognition is an important step of license plate recognition and detection, four different methods for character recognition have been experimented on, which include Convolution Neural Network (CNN), MobileNet, Inception V3, ResNet 50

    Human-like problem-solving abilities in large language models using ChatGPT

    Get PDF
    BackgroundsThe field of Artificial Intelligence (AI) has seen a major shift in recent years due to the development of new Machine Learning (ML) models such as Generative Pre-trained Transformer (GPT). GPT has achieved previously unheard-of levels of accuracy in most computerized language processing tasks and their chat-based variations.AimThe aim of this study was to investigate the problem-solving abilities of ChatGPT using two sets of verbal insight problems, with a known performance level established by a sample of human participants.Materials and methodsA total of 30 problems labeled as “practice problems” and “transfer problems” were administered to ChatGPT. ChatGPT's answers received a score of “0” for each incorrectly answered problem and a score of “1” for each correct response. The highest possible score for both the practice and transfer problems was 15 out of 15. The solution rate for each problem (based on a sample of 20 subjects) was used to assess and compare the performance of ChatGPT with that of human subjects.ResultsThe study highlighted that ChatGPT can be trained in out-of-the-box thinking and demonstrated potential in solving verbal insight problems. The global performance of ChatGPT equalled the most probable outcome for the human sample in both practice problems and transfer problems as well as upon their combination. Additionally, ChatGPT answer combinations were among the 5% of most probable outcomes for the human sample both when considering practice problems and pooled problem sets. These findings demonstrate that ChatGPT performance on both set of problems was in line with the mean rate of success of human subjects, indicating that it performed reasonably well.ConclusionsThe use of transformer architecture and self-attention in ChatGPT may have helped to prioritize inputs while predicting, contributing to its potential in verbal insight problem-solving. ChatGPT has shown potential in solving insight problems, thus highlighting the importance of incorporating AI into psychological research. However, it is acknowledged that there are still open challenges. Indeed, further research is required to fully understand AI's capabilities and limitations in verbal problem-solving

    Augmented classification for electrical coil winding defects

    Get PDF
    A green revolution has accelerated over the recent decades with a look to replace existing transportation power solutions through the adoption of greener electrical alternatives. In parallel the digitisation of manufacturing has enabled progress in the tracking and traceability of processes and improvements in fault detection and classification. This paper explores electrical machine manufacture and the challenges faced in identifying failures modes during this life cycle through the demonstration of state-of-the-art machine vision methods for the classification of electrical coil winding defects. We demonstrate how recent generative adversarial networks can be used to augment training of these models to further improve their accuracy for this challenging task. Our approach utilises pre-processing and dimensionality reduction to boost performance of the model from a standard convolutional neural network (CNN) leading to a significant increase in accuracy

    A New Methodology for Bridge Inspections in Linear Infrastructures from Optical Images and HD Videos Obtained by UAV

    Get PDF
    Many bridges and other structures worldwide present a lack of maintenance or a need for rehabilitation. The first step in the rehabilitation process is to perform a bridge inspection to know the bridge′s current state. Routine bridge inspections are usually based only on visual recognition. In this paper, a methodology for bridge inspections in communication routes using images acquired by unmanned aerial vehicle (UAV) flights is proposed. This provides access to the upper parts of the structure safely and without traffic disruptions. Then, a standardized and systematized novel image acquisition protocol is applied for data acquisition. Afterwards, the images are studied by civil engineers for damage identification and description. Then, specific structural inspection forms are completed using the acquired information. Recommendations about the need of new and more detailed inspections should be included at this stage when needed. The suggested methodology was tested on two railway bridges in France. Image acquisition of these structures was performed using an UAV for its ability to provide an expert assessment of the damage level. The main advantage of this method is that it makes it possible to safely accurately identify diverse damages in structures without the need for a specialised engineer to go to the site. Moreover, the videos can be watched by as many engineers as needed with no personal movement. The main objective of this work is to describe the systematized methodology for the development of bridge inspection tasks using a UAV system. According to this proposal, the in situ inspection by a specialised engineer is replaced by images and videos obtained from an UAV flight by a trained flight operator. To this aim, a systematized image/videos acquisition method is defined for the study of the morphology and typology of the structural elements of the inspected bridges. Additionally, specific inspection forms are proposed for every type of structural element. The recorded information will allow structural engineers to perform a postanalysis of the damage affecting the bridges and to evaluate the subsequent recommendations.This research was funded by the Shift2Rail Joint Undertaking under the European Union’s Horizon 2020 research and innovation program, with grant agreement No 777630, project MOMIT, “Multiscale Observation and Monitoring of railway Infrastructure Threats”

    Um modelo para suporte automatizado ao reconhecimento, extração, personalização e reconstrução de gráficos estáticos

    Get PDF
    Data charts are widely used in our daily lives, being present in regular media, such as newspapers, magazines, web pages, books, and many others. A well constructed data chart leads to an intuitive understanding of its underlying data and in the same way, when data charts have wrong design choices, a redesign of these representations might be needed. However, in most cases, these charts are shown as a static image, which means that the original data are not usually available. Therefore, automatic methods could be applied to extract the underlying data from the chart images to allow these changes. The task of recognizing charts and extracting data from them is complex, largely due to the variety of chart types and their visual characteristics. Computer Vision techniques for image classification and object detection are widely used for the problem of recognizing charts, but only in images without any disturbance. Other features in real-world images that can make this task difficult are not present in most literature works, like photo distortions, noise, alignment, etc. Two computer vision techniques that can assist this task and have been little explored in this context are perspective detection and correction. These methods transform a distorted and noisy chart in a clear chart, with its type ready for data extraction or other uses. The task of reconstructing data is straightforward, as long the data is available the visualization can be reconstructed, but the scenario of reconstructing it on the same context is complex. Using a Visualization Grammar for this scenario is a key component, as these grammars usually have extensions for interaction, chart layers, and multiple views without requiring extra development effort. This work presents a model for automated support for custom recognition, and reconstruction of charts in images. The model automatically performs the process steps, such as reverse engineering, turning a static chart back into its data table for later reconstruction, while allowing the user to make modifications in case of uncertainties. This work also features a model-based architecture along with prototypes for various use cases. Validation is performed step by step, with methods inspired by the literature. This work features three use cases providing proof of concept and validation of the model. The first use case features usage of chart recognition methods focused on documents in the real-world, the second use case focus on vocalization of charts, using a visualization grammar to reconstruct a chart in audio format, and the third use case presents an Augmented Reality application that recognizes and reconstructs charts in the same context (a piece of paper) overlaying the new chart and interaction widgets. The results showed that with slight changes, chart recognition and reconstruction methods are now ready for real-world charts, when taking time, accuracy and precision into consideration.Os gráficos de dados são amplamente utilizados na nossa vida diária, estando presentes nos meios de comunicação regulares, tais como jornais, revistas, páginas web, livros, e muitos outros. Um gráfico bem construído leva a uma compreensão intuitiva dos seus dados inerentes e da mesma forma, quando os gráficos de dados têm escolhas de conceção erradas, poderá ser necessário um redesenho destas representações. Contudo, na maioria dos casos, estes gráficos são mostrados como uma imagem estática, o que significa que os dados originais não estão normalmente disponíveis. Portanto, poderiam ser aplicados métodos automáticos para extrair os dados inerentes das imagens dos gráficos, a fim de permitir estas alterações. A tarefa de reconhecer os gráficos e extrair dados dos mesmos é complexa, em grande parte devido à variedade de tipos de gráficos e às suas características visuais. As técnicas de Visão Computacional para classificação de imagens e deteção de objetos são amplamente utilizadas para o problema de reconhecimento de gráficos, mas apenas em imagens sem qualquer ruído. Outras características das imagens do mundo real que podem dificultar esta tarefa não estão presentes na maioria das obras literárias, como distorções fotográficas, ruído, alinhamento, etc. Duas técnicas de visão computacional que podem ajudar nesta tarefa e que têm sido pouco exploradas neste contexto são a deteção e correção da perspetiva. Estes métodos transformam um gráfico distorcido e ruidoso em um gráfico limpo, com o seu tipo pronto para extração de dados ou outras utilizações. A tarefa de reconstrução de dados é simples, desde que os dados estejam disponíveis a visualização pode ser reconstruída, mas o cenário de reconstrução no mesmo contexto é complexo. A utilização de uma Gramática de Visualização para este cenário é um componente chave, uma vez que estas gramáticas têm normalmente extensões para interação, camadas de gráficos, e visões múltiplas sem exigir um esforço extra de desenvolvimento. Este trabalho apresenta um modelo de suporte automatizado para o reconhecimento personalizado, e reconstrução de gráficos em imagens estáticas. O modelo executa automaticamente as etapas do processo, tais como engenharia inversa, transformando um gráfico estático novamente na sua tabela de dados para posterior reconstrução, ao mesmo tempo que permite ao utilizador fazer modificações em caso de incertezas. Este trabalho também apresenta uma arquitetura baseada em modelos, juntamente com protótipos para vários casos de utilização. A validação é efetuada passo a passo, com métodos inspirados na literatura. Este trabalho apresenta três casos de uso, fornecendo prova de conceito e validação do modelo. O primeiro caso de uso apresenta a utilização de métodos de reconhecimento de gráficos focando em documentos no mundo real, o segundo caso de uso centra-se na vocalização de gráficos, utilizando uma gramática de visualização para reconstruir um gráfico em formato áudio, e o terceiro caso de uso apresenta uma aplicação de Realidade Aumentada que reconhece e reconstrói gráficos no mesmo contexto (um pedaço de papel) sobrepondo os novos gráficos e widgets de interação. Os resultados mostraram que com pequenas alterações, os métodos de reconhecimento e reconstrução dos gráficos estão agora prontos para os gráficos do mundo real, tendo em consideração o tempo, a acurácia e a precisão.Programa Doutoral em Engenharia Informátic
    corecore