20,318 research outputs found

    DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction

    Get PDF
    Compressed Sensing Magnetic Resonance Imaging (CS-MRI) enables fast acquisition, which is highly desirable for numerous clinical applications. This can not only reduce the scanning cost and ease patient burden, but also potentially reduce motion artefacts and the effect of contrast washout, thus yielding better image quality. Different from parallel imaging based fast MRI, which utilises multiple coils to simultaneously receive MR signals, CS-MRI breaks the Nyquist-Shannon sampling barrier to reconstruct MRI images with much less required raw data. This paper provides a deep learning based strategy for reconstruction of CS-MRI, and bridges a substantial gap between conventional non-learning methods working only on data from a single image, and prior knowledge from large training datasets. In particular, a novel conditional Generative Adversarial Networks-based model (DAGAN) is proposed to reconstruct CS-MRI. In our DAGAN architecture, we have designed a refinement learning method to stabilise our U-Net based generator, which provides an endto-end network to reduce aliasing artefacts. To better preserve texture and edges in the reconstruction, we have coupled the adversarial loss with an innovative content loss. In addition, we incorporate frequency domain information to enforce similarity in both the image and frequency domains. We have performed comprehensive comparison studies with both conventional CSMRI reconstruction methods and newly investigated deep learning approaches. Compared to these methods, our DAGAN method provides superior reconstruction with preserved perceptual image details. Furthermore, each image is reconstructed in about 5 ms, which is suitable for real-time processing

    A Deep Cascade of Convolutional Neural Networks for MR Image Reconstruction

    Full text link
    The acquisition of Magnetic Resonance Imaging (MRI) is inherently slow. Inspired by recent advances in deep learning, we propose a framework for reconstructing MR images from undersampled data using a deep cascade of convolutional neural networks to accelerate the data acquisition process. We show that for Cartesian undersampling of 2D cardiac MR images, the proposed method outperforms the state-of-the-art compressed sensing approaches, such as dictionary learning-based MRI (DLMRI) reconstruction, in terms of reconstruction error, perceptual quality and reconstruction speed for both 3-fold and 6-fold undersampling. Compared to DLMRI, the error produced by the method proposed is approximately twice as small, allowing to preserve anatomical structures more faithfully. Using our method, each image can be reconstructed in 23 ms, which is fast enough to enable real-time applications
    • …
    corecore