189 research outputs found

    A clinically motivated self-supervised approach for content-based image retrieval of CT liver images

    Get PDF
    Deep learning-based approaches for content-based image retrieval (CBIR) of computed tomography (CT) liver images is an active field of research, but suffer from some critical limitations. First, they are heavily reliant on labeled data, which can be challenging and costly to acquire. Second, they lack transparency and explainability, which limits the trustworthiness of deep CBIR systems. We address these limitations by: (1) Proposing a self-supervised learning framework that incorporates domain-knowledge into the training procedure, and, (2) by providing the first representation learning explainability analysis in the context of CBIR of CT liver images. Results demonstrate improved performance compared to the standard self-supervised approach across several metrics, as well as improved generalization across datasets. Further, we conduct the first representation learning explainability analysis in the context of CBIR, which reveals new insights into the feature extraction process. Lastly, we perform a case study with cross-examination CBIR that demonstrates the usability of our proposed framework. We believe that our proposed framework could play a vital role in creating trustworthy deep CBIR systems that can successfully take advantage of unlabeled data

    Automated Characterisation and Classification of Liver Lesions From CT Scans

    Get PDF
    Cancer is a general term for a wide range of diseases that can affect any part of the body due to the rapid creation of abnormal cells that grow outside their normal boundaries. Liver cancer is one of the common diseases that cause the death of more than 600,000 each year. Early detection is important to diagnose and reduce the incidence of death. Examination of liver lesions is performed with various medical imaging modalities such as Ultrasound (US), Computer tomography (CT), and Magnetic resonance imaging (MRI). The improvements in medical imaging and image processing techniques have significantly enhanced the interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. Moreover, CAD systems can help physician, as a second opinion, in characterising lesions and making the diagnostic decision. Thus, CAD systems have become an important research area. Particularly, these systems can provide diagnostic assistance to doctors to improve overall diagnostic accuracy. The traditional methods to characterise liver lesions and differentiate normal liver tissues from abnormal ones are largely dependent on the radiologists experience. Thus, CAD systems based on the image processing and artificial intelligence techniques gained a lot of attention, since they could provide constructive diagnosis suggestions to clinicians for decision making. The liver lesions are characterised through two ways: (1) Using a content-based image retrieval (CBIR) approach to assist the radiologist in liver lesions characterisation. (2) Calculating the high-level features that describe/ characterise the liver lesion in a way that is interpreted by humans, particularly Radiologists/Clinicians, based on the hand-crafted/engineered computational features (low-level features) and learning process. However, the research gap is related to the high-level understanding and interpretation of the medical image contents from the low-level pixel analysis, based on mathematical processing and artificial intelligence methods. In our work, the research gap is bridged if a relation of image contents to medical meaning in analogy to radiologist understanding is established. This thesis explores an automated system for the classification and characterisation of liver lesions in CT scans. Firstly, the liver is segmented automatically by using anatomic medical knowledge, histogram-based adaptive threshold and morphological operations. The lesions and vessels are then extracted from the segmented liver by applying AFCM and Gaussian mixture model through a region growing process respectively. Secondly, the proposed framework categorises the high-level features into two groups; the first group is the high-level features that are extracted from the image contents such as (Lesion location, Lesion focality, Calcified, Scar, ...); the second group is the high-level features that are inferred from the low-level features through machine learning process to characterise the lesion such as (Lesion density, Lesion rim, Lesion composition, Lesion shape,...). The novel Multiple ROIs selection approach is proposed, in which regions are derived from generating abnormality level map based on intensity difference and the proximity distance for each voxel with respect to the normal liver tissue. Then, the association between low-level, high-level features and the appropriate ROI are derived by assigning the ability of each ROI to represents a set of lesion characteristics. Finally, a novel feature vector is built, based on high-level features, and fed into SVM for lesion classification. In contrast with most existing research, which uses low-level features only, the use of high-level features and characterisation helps in interpreting and explaining the diagnostic decision. The methods are evaluated on a dataset containing 174 CT scans. The experimental results demonstrated that the efficacy of the proposed framework in the successful characterisation and classification of the liver lesions in CT scans. The achieved average accuracy was 95:56% for liver lesion characterisation. While the lesion’s classification accuracy was 97:1% for the entire dataset. The proposed framework is developed to provide a more robust and efficient lesion characterisation framework through comprehensions of the low-level features to generate semantic features. The use of high-level features (characterisation) helps in better interpretation of CT liver images. In addition, the difference-of-features using multiple ROIs were developed for robust capturing of lesion characteristics in a reliable way. This is in contrast to the current research trend of extracting the features from the lesion only and not paying much attention to the relation between lesion and surrounding area. The design of the liver lesion characterisation framework is based on the prior knowledge of the medical background to get a better and clear understanding of the liver lesion characteristics in medical CT images

    腹部CT像上の複数オブジェクトのセグメンテーションのための統計的手法に関する研究

    Get PDF
    Computer aided diagnosis (CAD) is the use of a computer-generated output as an auxiliary tool for the assistance of efficient interpretation and accurate diagnosis. Medical image segmentation has an essential role in CAD in clinical applications. Generally, the task of medical image segmentation involves multiple objects, such as organs or diffused tumor regions. Moreover, it is very unfavorable to segment these regions from abdominal Computed Tomography (CT) images because of the overlap in intensity and variability in position and shape of soft tissues. In this thesis, a progressive segmentation framework is proposed to extract liver and tumor regions from CT images more efficiently, which includes the steps of multiple organs coarse segmentation, fine segmentation, and liver tumors segmentation. Benefit from the previous knowledge of the shape and its deformation, the Statistical shape model (SSM) method is firstly utilized to segment multiple organs regions robustly. In the process of building an SSM, the correspondence of landmarks is crucial to the quality of the model. To generate a more representative prototype of organ surface, a k-mean clustering method is proposed. The quality of the SSMs, which is measured by generalization ability, specificity, and compactness, was improved. We furtherly extend the shapes correspondence to multiple objects. A non-rigid iterative closest point surface registration process is proposed to seek more properly corresponded landmarks across the multi-organ surfaces. The accuracy of surface registration was improved as well as the model quality. Moreover, to localize the abdominal organs simultaneously, we proposed a random forest regressor cooperating intensity features to predict the position of multiple organs in the CT image. The regions of the organs are substantially restrained using the trained shape models. The accuracy of coarse segmentation using SSMs was increased by the initial information of organ positions.Consequently, a pixel-wise segmentation using the classification of supervoxels is applied for the fine segmentation of multiple organs. The intensity and spatial features are extracted from each supervoxels and classified by a trained random forest. The boundary of the supervoxels is closer to the real organs than the previous coarse segmentation. Finally, we developed a hybrid framework for liver tumor segmentation in multiphase images. To deal with these issues of distinguishing and delineating tumor regions and peripheral tissues, this task is accomplished in two steps: a cascade region-based convolutional neural network (R-CNN) with a refined head is trained to locate the bounding boxes that contain tumors, and a phase-sensitive noise filtering is introduced to refine the following segmentation of tumor regions conducted by a level-set-based framework. The results of tumor detection show the adjacent tumors are successfully separated by the improved cascaded R-CNN. The accuracy of tumor segmentation is also improved by our proposed method. 26 cases of multi-phase CT images were used to validate our proposed method for the segmentation of liver tumors. The average precision and recall rates for tumor detection are 76.8% and 84.4%, respectively. The intersection over union, true positive rate, and false positive rate for tumor segmentation are 72.7%, 76.2%, and 4.75%, respectively.九州工業大学博士学位論文 学位記番号: 工博甲第546号 学位授与年月日: 令和4年3月25日1 Introduction|2 Literature Review|3 Statistical Shape Model Building|4 Multi-organ Segmentation|5 Liver Tumors Segmentation|6 Summary and Outlook九州工業大学令和3年

    Deep learning-based diagnostic system for malignant liver detection

    Get PDF
    Cancer is the second most common cause of death of human beings, whereas liver cancer is the fifth most common cause of mortality. The prevention of deadly diseases in living beings requires timely, independent, accurate, and robust detection of ailment by a computer-aided diagnostic (CAD) system. Executing such intelligent CAD requires some preliminary steps, including preprocessing, attribute analysis, and identification. In recent studies, conventional techniques have been used to develop computer-aided diagnosis algorithms. However, such traditional methods could immensely affect the structural properties of processed images with inconsistent performance due to variable shape and size of region-of-interest. Moreover, the unavailability of sufficient datasets makes the performance of the proposed methods doubtful for commercial use. To address these limitations, I propose novel methodologies in this dissertation. First, I modified a generative adversarial network to perform deblurring and contrast adjustment on computed tomography (CT) scans. Second, I designed a deep neural network with a novel loss function for fully automatic precise segmentation of liver and lesions from CT scans. Third, I developed a multi-modal deep neural network to integrate pathological data with imaging data to perform computer-aided diagnosis for malignant liver detection. The dissertation starts with background information that discusses the proposed study objectives and the workflow. Afterward, Chapter 2 reviews a general schematic for developing a computer-aided algorithm, including image acquisition techniques, preprocessing steps, feature extraction approaches, and machine learning-based prediction methods. The first study proposed in Chapter 3 discusses blurred images and their possible effects on classification. A novel multi-scale GAN network with residual image learning is proposed to deblur images. The second method in Chapter 4 addresses the issue of low-contrast CT scan images. A multi-level GAN is utilized to enhance images with well-contrast regions. Thus, the enhanced images improve the cancer diagnosis performance. Chapter 5 proposes a deep neural network for the segmentation of liver and lesions from abdominal CT scan images. A modified Unet with a novel loss function can precisely segment minute lesions. Similarly, Chapter 6 introduces a multi-modal approach for liver cancer variants diagnosis. The pathological data are integrated with CT scan images to diagnose liver cancer variants. In summary, this dissertation presents novel algorithms for preprocessing and disease detection. Furthermore, the comparative analysis validates the effectiveness of proposed methods in computer-aided diagnosis

    Computed-Tomography (CT) Scan

    Get PDF
    A computed tomography (CT) scan uses X-rays and a computer to create detailed images of the inside of the body. CT scanners measure, versus different angles, X-ray attenuations when passing through different tissues inside the body through rotation of both X-ray tube and a row of X-ray detectors placed in the gantry. These measurements are then processed using computer algorithms to reconstruct tomographic (cross-sectional) images. CT can produce detailed images of many structures inside the body, including the internal organs, blood vessels, and bones. This book presents a comprehensive overview of CT scanning. Chapters address such topics as instrumental basics, CT imaging in coronavirus, radiation and risk assessment in chest imaging, positron emission tomography (PET), and feature extraction

    TPCNN: Two-path convolutional neural network for tumor and liver segmentation in CT images using a novel encoding approach

    Get PDF
    Automatic liver and tumour segmentation in CT images are crucial in numerous clinical applications, such as postoperative assessment, surgical planning, and pathological diagnosis of hepatic diseases. However, there are still a considerable number of difficulties to overcome due to the fuzzy boundary, irregular shapes, and complex tissues of the liver. In this paper, for liver and tumor segmentation and to overcome the mentioned challenges a simple but powerful strategy is presented based on a cascade convolutional neural network. At the first, the input image is normalized using the Z-Score algorithm. This normalized image provides more information about the boundary of tumor and liver. Also, the Local Direction of Gradient (LDOG) which is a novel encoding algorithm is proposed to demonstrate some key features inside the image. The proposed encoding image is highly effective in recognizing the border of liver, even in the regions close to the touching organs. Then, a cascade CNN structure for extracting both local and semi-global features is used which utilized the original image and two other obtained images as the input data. Rather than using a complex deep CNN model with a lot of hyperparameters, we employ a simple but effective model to decrease the train and testing time. Our technique outperforms the state-of-the-art works in terms of segmentation accuracy and efficiency

    Imaging Sensors and Applications

    Get PDF
    In past decades, various sensor technologies have been used in all areas of our lives, thus improving our quality of life. In particular, imaging sensors have been widely applied in the development of various imaging approaches such as optical imaging, ultrasound imaging, X-ray imaging, and nuclear imaging, and contributed to achieve high sensitivity, miniaturization, and real-time imaging. These advanced image sensing technologies play an important role not only in the medical field but also in the industrial field. This Special Issue covers broad topics on imaging sensors and applications. The scope range of imaging sensors can be extended to novel imaging sensors and diverse imaging systems, including hardware and software advancements. Additionally, biomedical and nondestructive sensing applications are welcome

    Cloud-Based Benchmarking of Medical Image Analysis

    Get PDF
    Medical imagin
    corecore