337 research outputs found

    MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction.

    Get PDF
    BACKGROUND: Unsupervised learning can discover various unseen abnormalities, relying on large-scale unannotated medical images of healthy subjects. Towards this, unsupervised methods reconstruct a 2D/3D single medical image to detect outliers either in the learned feature space or from high reconstruction loss. However, without considering continuity between multiple adjacent slices, they cannot directly discriminate diseases composed of the accumulation of subtle anatomical anomalies, such as Alzheimer's disease (AD). Moreover, no study has shown how unsupervised anomaly detection is associated with either disease stages, various (i.e., more than two types of) diseases, or multi-sequence magnetic resonance imaging (MRI) scans. RESULTS: We propose unsupervised medical anomaly detection generative adversarial network (MADGAN), a novel two-step method using GAN-based multiple adjacent brain MRI slice reconstruction to detect brain anomalies at different stages on multi-sequence structural MRI: (Reconstruction) Wasserstein loss with Gradient Penalty + 100 [Formula: see text] loss-trained on 3 healthy brain axial MRI slices to reconstruct the next 3 ones-reconstructs unseen healthy/abnormal scans; (Diagnosis) Average [Formula: see text] loss per scan discriminates them, comparing the ground truth/reconstructed slices. For training, we use two different datasets composed of 1133 healthy T1-weighted (T1) and 135 healthy contrast-enhanced T1 (T1c) brain MRI scans for detecting AD and brain metastases/various diseases, respectively. Our self-attention MADGAN can detect AD on T1 scans at a very early stage, mild cognitive impairment (MCI), with area under the curve (AUC) 0.727, and AD at a late stage with AUC 0.894, while detecting brain metastases on T1c scans with AUC 0.921. CONCLUSIONS: Similar to physicians' way of performing a diagnosis, using massive healthy training data, our first multiple MRI slice reconstruction approach, MADGAN, can reliably predict the next 3 slices from the previous 3 ones only for unseen healthy images. As the first unsupervised various disease diagnosis, MADGAN can reliably detect the accumulation of subtle anatomical anomalies and hyper-intense enhancing lesions, such as (especially late-stage) AD and brain metastases on multi-sequence MRI scans

    Radiomics and Deep Learning in Brain Metastases: Current Trends and Roadmap to Future Applications

    Get PDF
    Advances in radiomics and deep learning (DL) hold great potential to be at the forefront of precision medicine for the treatment of patients with brain metastases. Radiomics and DL can aid clinical decision-making by enabling accurate diagnosis, facilitating the identification of molecular markers, providing accurate prognoses, and monitoring treatment response. In this review, we summarize the clinical background, unmet needs, and current state of research of radiomics and DL for the treatment of brain metastases. The promises, pitfalls, and future roadmap of radiomics and DL in brain metastases are addressed as well.ope

    Machine Learning and Quantitative Imaging for the Management of Brain Metastasis

    Get PDF
    Significantly affecting patients’ clinical course and quality of life, a growing number of cancer cases are diagnosed with brain metastasis annually. Although a considerable percentage of cancer patients survive for several years if the disease is discovered at an early stage while it is still localized, when the tumour is metastasized to the brain, the median survival decreases considerably. Early detection followed by precise and effective treatment of brain metastasis may lead to improved patient survival and quality of life. A main challenge to prescribe an effective treatment regimen is the variability of tumour response to treatments, e.g., radiotherapy as a main treatment option for brain metastasis, despite similar cancer therapy, due to many patient-related factors. Stratifying patients based on their predicted response and consequently assessing their response to therapy are challenging yet crucial tasks. While risk assessment models with standard clinical attributes have been proposed for patient stratification, the imaging data acquired for these patients as a part of the standard-of-care are not computationally analyzed or directly incorporated in these models. Further, therapy response monitoring and assessment is a cumbersome task for patients with brain metastasis that requires longitudinal tumour delineation on MRI volumes before and at multiple follow-up sessions after treatment. This is aggravated by the time-sensitive nature of the disease. In an effort to address these challenges, a number of machine learning frameworks and computational techniques in areas of automatic tumour segmentation, radiotherapy outcome assessment, and therapy outcome prediction have been introduced and investigated in this dissertation. Powered by advanced machine learning algorithms, a complex attention-guided segmentation framework is introduced and investigated for segmenting brain tumours on serial MRI. The experimental results demonstrate that the proposed framework can achieve a dice score of 91.5% and 84.1% to 87.4% on the baseline and follow-up scans, respectively. This framework is then applied in a proposed system that follows standard clinical criteria based on changes in tumour size at post-treatment to assess tumour response to radiotherapy automatically. The system demonstrates a very good agreement with expert clinicians in detecting local response, with an accuracy of over 90%. Next, innovative machine-learning-based solutions are proposed and investigated for radiotherapy outcome prediction before or early after therapy, using MRI radiomic models and novel deep learning architectures that analyze treatment-planning MRI with and without standard clinical attributes. The developed models demonstrate an accuracy of up to 82.5% in predicting radiotherapy outcome before the treatment initiation. The ground-breaking machine learning platforms presented in this dissertation along with the promising results obtained in the conducted experiments are steps forward towards realizing important decision support tools for oncologists and radiologists and, can eventually, pave the way towards the personalized therapeutics paradigm for cancer patient
    corecore