245 research outputs found

    A Survey of Blind Modulation Classification Techniques for OFDM Signals

    Get PDF
    Blind modulation classification (MC) is an integral part of designing an adaptive or intelligent transceiver for future wireless communications. Blind MC has several applications in the adaptive and automated systems of sixth generation (6G) communications to improve spectral efficiency and power efficiency, and reduce latency. It will become a integral part of intelligent software-defined radios (SDR) for future communication. In this paper, we provide various MC techniques for orthogonal frequency division multiplexing (OFDM) signals in a systematic way. We focus on the most widely used statistical and machine learning (ML) models and emphasize their advantages and limitations. The statistical-based blind MC includes likelihood-based (LB), maximum a posteriori (MAP) and feature-based methods (FB). The ML-based automated MC includes k-nearest neighbors (KNN), support vector machine (SVM), decision trees (DTs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) based MC methods. This survey will help the reader to understand the main characteristics of each technique, their advantages and disadvantages. We have also simulated some primary methods, i.e., statistical- and ML-based algorithms, under various constraints, which allows a fair comparison among different methodologies. The overall system performance in terms bit error rate (BER) in the presence of MC is also provided. We also provide a survey of some practical experiment works carried out through National Instrument hardware over an indoor propagation environment. In the end, open problems and possible directions for blind MC research are briefly discussed

    Deep Autoencoder-based Z-Interference Channels with Perfect and Imperfect CSI

    Full text link
    A deep autoencoder (DAE)-based structure for endto-end communication over the two-user Z-interference channel (ZIC) with finite-alphabet inputs is designed in this paper. The proposed structure jointly optimizes the two encoder/decoder pairs and generates interference-aware constellations that dynamically adapt their shape based on interference intensity to minimize the bit error rate (BER). An in-phase/quadrature-phase (I/Q) power allocation layer is introduced in the DAE to guarantee an average power constraint and enable the architecture to generate constellations with nonuniform shapes. This brings further gain compared to standard uniform constellations such as quadrature amplitude modulation. The proposed structure is then extended to work with imperfect channel state information (CSI). The CSI imperfection due to both the estimation and quantization errors are examined. The performance of the DAEZIC is compared with two baseline methods, i.e., standard and rotated constellations. The proposed structure significantly enhances the performance of the ZIC both for the perfect and imperfect CSI. Simulation results show that the improvement is achieved in all interference regimes (weak, moderate, and strong) and consistently increases with the signal-to-noise ratio (SNR). For example, more than an order of magnitude BER reduction is obtained with respect to the most competitive conventional method at weak interference when SNR>15dB and two bits per symbol are transmitted. The improvements reach about two orders of magnitude when quantization error exists, indicating that the DAE-ZIC is more robust to the interference compared to the conventional methods.Comment: 13 pages, 13 figures, 2 tables. Accepted for publication in the IEEE Transactions on Communications. arXiv admin note: text overlap with arXiv:2303.0831

    Joint 1D and 2D Neural Networks for Automatic Modulation Recognition

    Get PDF
    The digital communication and radar community has recently manifested more interest in using data-driven approaches for tasks such as modulation recognition, channel estimation and distortion correction. In this research we seek to apply an object detector for parameter estimation to perform waveform separation in the time and frequency domain prior to classification. This enables the full automation of detecting and classifying simultaneously occurring waveforms. We leverage a lD ResNet implemented by O\u27Shea et al. in [1] and the YOLO v3 object detector designed by Redmon et al. in [2]. We conducted an in depth study of the performance of these architectures and integrated the models to perform joint detection and classification. To our knowledge, the present research is the first to study and successfully combine a lD ResNet classifier and Yolo v3 object detector to fully automate the process of AMR for parameter estimation, pulse extraction and waveform classification for non-cooperative scenarios. The overall performance of the joint detector/ classifier is 90 at 10 dB signal to noise ratio for 24 digital and analog modulations

    Learning Robust Radio Frequency Fingerprints Using Deep Convolutional Neural Networks

    Get PDF
    Radio Frequency Fingerprinting (RFF) techniques, which attribute uniquely identifiable signal distortions to emitters via Machine Learning (ML) classifiers, are limited by fingerprint variability under different operational conditions. First, this work studied the effect of frequency channel for typical RFF techniques. Performance characterization using the multi-class Matthews Correlation Coefficient (MCC) revealed that using frequency channels other than those used to train the models leads to deterioration in MCC to under 0.05 (random guess), indicating that single-channel models are inadequate for realistic operation. Second, this work presented a novel way of studying fingerprint variability through Fingerprint Extraction through Distortion Reconstruction (FEDR), a neural network-based approach for quantifying signal distortions in a relative distortion latent space. Coupled with a Dense network, FEDR fingerprints were evaluated against common RFF techniques for up to 100 unseen classes, where FEDR achieved best performance with MCC ranging from 0.945 (5 classes) to 0.746 (100 classes), using 73% fewer training parameters than the next-best technique
    • …
    corecore