271 research outputs found

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    RAPID: Retrofitting IEEE 802.11ay Access Points for Indoor Human Detection and Sensing

    Full text link
    In this work we present RAPID, a joint communication and radar (JCR) system based on next-generation IEEE 802.11ay WiFi networks operating in the 60 GHz band. In contrast to most existing approaches for human sensing at millimeter-waves, which employ special-purpose radars to retrieve the small-scale Doppler effect (micro-Doppler) caused by human motion, RAPID achieves radar-level sensing accuracy by retrofitting IEEE 802.11ay access points. For this, it leverages the IEEE 802.11ay beam training mechanism to accurately localize and track multiple individuals, while the in-packet beam tracking fields are exploited to extract the desired micro-Doppler signatures from the time-varying phase of the channel impulse response (CIR). The proposed approach enables activity recognition and person identification with IEEE 802.11ay wireless networks without requiring modifications to the packet structure specified by the standard. RAPID is implemented on an IEEE 802.11ay-compatible FPGA platform with phased antenna arrays, which estimates the CIR from the reflections of transmitted packets. The proposed system is evaluated on a large dataset of CIR measurements, proving robustness across different environments and subjects, and outperforming state-of-the-art sub-6 GHz WiFi sensing techniques. Using two access points, RAPID reliably tracks multiple subjects, reaching activity recognition and person identification accuracies of 94% and 90%, respectively.Comment: 16 pages, 18 figures, 4 table

    Edge Artificial Intelligence for Real-Time Target Monitoring

    Get PDF
    The key enabling technology for the exponentially growing cellular communications sector is location-based services. The need for location-aware services has increased along with the number of wireless and mobile devices. Estimation problems, and particularly parameter estimation, have drawn a lot of interest because of its relevance and engineers' ongoing need for higher performance. As applications expanded, a lot of interest was generated in the accurate assessment of temporal and spatial properties. In the thesis, two different approaches to subject monitoring are thoroughly addressed. For military applications, medical tracking, industrial workers, and providing location-based services to the mobile user community, which is always growing, this kind of activity is crucial. In-depth consideration is given to the viability of applying the Angle of Arrival (AoA) and Receiver Signal Strength Indication (RSSI) localization algorithms in real-world situations. We presented two prospective systems, discussed them, and presented specific assessments and tests. These systems were put to the test in diverse contexts (e.g., indoor, outdoor, in water...). The findings showed the localization capability, but because of the low-cost antenna we employed, this method is only practical up to a distance of roughly 150 meters. Consequently, depending on the use-case, this method may or may not be advantageous. An estimation algorithm that enhances the performance of the AoA technique was implemented on an edge device. Another approach was also considered. Radar sensors have shown to be durable in inclement weather and bad lighting conditions. Frequency Modulated Continuous Wave (FMCW) radars are the most frequently employed among the several sorts of radar technologies for these kinds of applications. Actually, this is because they are low-cost and can simultaneously provide range and Doppler data. In comparison to pulse and Ultra Wide Band (UWB) radar sensors, they also need a lower sample rate and a lower peak to average ratio. The system employs a cutting-edge surveillance method based on widely available FMCW radar technology. The data processing approach is built on an ad hoc-chain of different blocks that transforms data, extract features, and make a classification decision before cancelling clutters and leakage using a frame subtraction technique, applying DL algorithms to Range-Doppler (RD) maps, and adding a peak to cluster assignment step before tracking targets. In conclusion, the FMCW radar and DL technique for the RD maps performed well together for indoor use-cases. The aforementioned tests used an edge device and Infineon Technologies' Position2Go FMCW radar tool-set

    Toward Unobtrusive In-home Gait Analysis Based on Radar Micro-Doppler Signatures

    Full text link
    Objective: In this paper, we demonstrate the applicability of radar for gait classification with application to home security, medical diagnosis, rehabilitation and assisted living. Aiming at identifying changes in gait patterns based on radar micro-Doppler signatures, this work is concerned with solving the intra motion category classification problem of gait recognition. Methods: New gait classification approaches utilizing physical features, subspace features and sum-of-harmonics modeling are presented and their performances are evaluated using experimental K-band radar data of four test subjects. Five different gait classes are considered for each person, including normal, pathological and assisted walks. Results: The proposed approaches are shown to outperform existing methods for radar-based gait recognition which utilize physical features from the cadence-velocity data representation domain as in this paper. The analyzed gait classes are correctly identified with an average accuracy of 93.8%, where a classification rate of 98.5% is achieved for a single gait class. When applied to new data of another individual a classification accuracy on the order of 80% can be expected. Conclusion: Radar micro-Doppler signatures and their Fourier transforms are well suited to capture changes in gait. Five different walking styles are recognized with high accuracy. Significance: Radar-based sensing of human gait is an emerging technology with multi-faceted applications in security and health care industries. We show that radar, as a contact-less sensing technology, can supplement existing gait diagnostic tools with respect to long-term monitoring and reproducibility of the examinations.Comment: 11 pages, 6 figure

    Human activity classification using micro-Doppler signatures and ranging techniques

    Get PDF
    PhD ThesisHuman activity recognition is emerging as a very import research area due to its potential applications in surveillance, assisted living, and military operations. Various sensors including accelerometers, RFID, and cameras, have been applied to achieve automatic human activity recognition. Wearable sensor-based techniques have been well explored. However, some studies have shown that many users are more disinclined to use wearable sensors and also may forget to carry them. Consequently, research in this area started to apply contactless sensing techniques to achieve human activity recognition unobtrusively. In this research, two methods were investigated for human activity recognition, one method is radar-based and the other is using LiDAR (Light Detection and Ranging). Compared to other techniques, Doppler radar and LiDAR have several advantages including all-weather and all-day capabilities, non-contact and nonintrusive features. Doppler radar also has strong penetration to walls, clothes, trees, etc. LiDAR can capture accurate (centimetre-level) locations of targets in real-time. These characteristics make methods based on Doppler radar and LiDAR superior to other techniques. Firstly, this research measured micro-Doppler signatures of different human activities indoors and outdoors using Doppler radars. Micro-Doppler signatures are presented in the frequency domain to reflect different frequency shifts resulted from different components of a moving target. One of the major differences of this research in relation to other relevant research is that a simple pulsed radar system of very low-power was used. The outdoor experiments were performed in places of heavy clutter (grass, trees, uneven terrains), and confusers including animals and drones, were also considered in the experiments. Novel usages of machine learning techniques were implemented to perform subject classification, human activity classification, people counting, and coarse-grained localisation by classifying the micro-Doppler signatures. For the feature extraction of the micro-Doppler signatures, this research proposed the use of a two-directional twodimensional principal component analysis (2D2PCA). The results show that by applying 2D2PCA, the accuracy results of Support Vector Machine (SVM) and k-Nearest Neighbour (kNN) classifiers were greatly improved. A Convolutional Neural Network (CNN) was built for the target classifications of type, number, activity, and coarse localisation. The CNN model obtained very high classification accuracies (97% to 100%) for the outdoor experiments, which were superior to the results obtained by SVM and kNN. The indoor experiments measured several daily activities with the focus on dietary activities (eating and drinking). An overall classification rate of 92.8% was obtained in activity recognition in a kitchen scenario using the CNN. Most importantly, in nearly real-time, the proposed approach successfully recognized human activities in more than 89% of the time. This research also investigated the effects on the classification performance of the frame length of the sliding window, the angle of the direction of movement, and the number of radars used; providing valuable guidelines for machine learning modeling and experimental setup of micro-Doppler based research and applications. Secondly, this research used a two dimensional (2D) LiDAR to perform human activity detection indoors. LiDAR is a popular surveying method that has been widely used in localisation, navigation, and mapping. This research proposed the use of a 2D LiDAR to perform multiple people activity recognition by classifying their trajectories. Points collected by the LiDAR were clustered and classified into human and non-human classes. For the human class, the Kalman filter was used to track their trajectories, and the trajectories were further segmented and labelled with their corresponding activities. Spatial transformation was used for trajectory augmentation in order to overcome the problem of unbalanced classes and boost the performance of human activity recognition. Finally, a Long Short-term Memory (LSTM) network and a (Temporal Convolutional Network) TCN was built to classify the trajectory samples into fifteen activity classes. The TCN achieved the best result of 99.49% overall accuracy. In comparison, the proposed TCN slightly outperforms the LSTM. Both of them outperform hidden Markov Model (HMM), dynamic time warping (DTW), and SVM with a wide margin
    corecore