343 research outputs found

    Fibre tract segmentation for intraoperative diffusion MRI in neurosurgical patients using tract-specific orientation atlas and tumour deformation modelling

    Get PDF
    Purpose:: Intraoperative diffusion MRI could provide a means of visualising brain fibre tracts near a neurosurgical target after preoperative images have been invalidated by brain shift. We propose an atlas-based intraoperative tract segmentation method, as the standard preoperative method, streamline tractography, is unsuitable for intraoperative implementation. Methods:: A tract-specific voxel-wise fibre orientation atlas is constructed from healthy training data. After registration with a target image, a radial tumour deformation model is applied to the orientation atlas to account for displacement caused by lesions. The final tract map is obtained from the inner product of the atlas and target image fibre orientation data derived from intraoperative diffusion MRI. Results:: The simple tumour model takes only seconds to effectively deform the atlas into alignment with the target image. With minimal processing time and operator effort, maps of surgically relevant tracts can be achieved that are visually and qualitatively comparable with results obtained from streamline tractography. Conclusion:: Preliminary results demonstrate feasibility of intraoperative streamline-free tract segmentation in challenging neurosurgical cases. Demonstrated results in a small number of representative sample subjects are realistic despite the simplicity of the tumour deformation model employed. Following this proof of concept, future studies will focus on achieving robustness in a wide range of tumour types and clinical scenarios, as well as quantitative validation of segmentations

    Higher-Order Tensors and Differential Topology in Diffusion MRI Modeling and Visualization

    Get PDF
    Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) is a noninvasive method for creating three-dimensional scans of the human brain. It originated mostly in the 1970s and started its use in clinical applications in the 1980s. Due to its low risk and relatively high image quality it proved to be an indispensable tool for studying medical conditions as well as for general scientific research. For example, it allows to map fiber bundles, the major neuronal pathways through the brain. But all evaluation of scanned data depends on mathematical signal models that describe the raw signal output and map it to biologically more meaningful values. And here we find the most potential for improvement. In this thesis we first present a new multi-tensor kurtosis signal model for DW-MRI. That means it can detect multiple overlapping fiber bundles and map them to a set of tensors. Compared to other already widely used multi-tensor models, we also add higher order kurtosis terms to each fiber. This gives a more detailed quantification of fibers. These additional values can also be estimated by the Diffusion Kurtosis Imaging (DKI) method, but we show that these values are drastically affected by fiber crossings in DKI, whereas our model handles them as intrinsic properties of fiber bundles. This reduces the effects of fiber crossings and allows a more direct examination of fibers. Next, we take a closer look at spherical deconvolution. It can be seen as a generalization of multi-fiber signal models to a continuous distribution of fiber directions. To this approach we introduce a novel mathematical constraint. We show, that state-of-the-art methods for estimating the fiber distribution become more robust and gain accuracy when enforcing our constraint. Additionally, in the context of our own deconvolution scheme, it is algebraically equivalent to enforcing that the signal can be decomposed into fibers. This means, tractography and other methods that depend on identifying a discrete set of fiber directions greatly benefit from our constraint. Our third major contribution to DW-MRI deals with macroscopic structures of fiber bundle geometry. In recent years the question emerged, whether or not, crossing bundles form two-dimensional surfaces inside the brain. Although not completely obvious, there is a mathematical obstacle coming from differential topology, that prevents general tangential planes spanned by fiber directions at each point to be connected into consistent surfaces. Research into how well this constraint is fulfilled in our brain is hindered by the high precision and complexity needed by previous evaluation methods. This is why we present a drastically simpler method that negates the need for precisely finding fiber directions and instead only depends on the simple diffusion tensor method (DTI). We then use our new method to explore and improve streamsurface visualization.<br /

    Estimating uncertainty in multiple fibre reconstructions

    Get PDF
    Diffusion magnetic resonance imaging (MRI) is a technique that allows us to probe the microstructure of materials. The standard technique in diffusion MRI is diffusion tensor imaging (DTI). However, DTI can only model a single fibre orientation and fails in regions of complex microstructure. Multiple-fibre algorithms aim to overcome this limitation of DTI, but there remain many questions about which multiple-fibre algorithms are most promising and how best to exploit them in tractography. This work focuses on exploring the potential of multiple-fibre reconstructions and preparing them for transfer to the clinical arena. We provide a standardised framework for comparing multiple-fibre algorithms and use it for a robust comparison of standard algorithms, such as persistent angular structure (PAS) MRI, spherical deconvolution (SD), maximum entropy SD (MESD), constrained SD (CSD) and QBall. An output of this framework is the parameter settings of the algorithms that maximise the consistency of reconstructions. We show that non-linear algorithms, and CSD in particular, provide the most consistent reconstructions. Next, we investigate features of the reconstructions that can be exploited to improve tractography. We show that the peak shapes of multiple-fibre reconstructions can be used to predict anisotropy in the uncertainty of fibre-orientation estimates. We design an experiment that exploits this information in the probabilistic index of connectivity (PICo) tractography algorithm. We then compare PICo tractography results using information about peak shape and sharpness to estimate uncertainty with PICo results using only the peak sharpness to estimate uncertainty and show structured differences. The final contribution of this work is a robust algorithm for calibrating PICo that overcomes some of the limitations of the original algorithm. We finish with some early exploratory work that aims to estimate the distribution of fibre-orientations in a voxel using features of the reconstruction

    Analyse et reconstruction de faisceaux de la matière blanche

    Get PDF
    L'imagerie par résonance magnétique de diffusion (IRMd) est une modalité d'acquisition permettant de sonder les tissus biologiques et d'en extraire une variété d'informations sur le mouvement microscopique des molécules d'eau. Plus spécifiquement à l'imagerie médicale, l'IRMd permet l'investigation des structures fibreuses de nombreux organes et facilite la compréhension des processus cognitifs ou au diagnostic. Dans le domaine des neurosciences, l'IRMd est cruciale à l'exploration de la connectivité structurelle de la matière blanche. Cette thèse s'intéresse plus particulièrement à la reconstruction de faisceaux de la matière blanche ainsi qu'à leur analyse. Toute la complexité du traitement des données commençant au scanneur jusqu'à la création d'un tractogramme est extrêmement importante. Par contre, l'application spécifique de reconstruction des faisceaux anatomiques plausibles est ultimement le véritable défi de l'IRMd. L'optimisation des paramètres de la tractographie, le processus de segmentation manuelle ou automatique ainsi que l'interprétation des résultats liée à ces faisceaux sont toutes des étapes du processus avec leurs lots de difficultés

    Analyse de l'architecture de la matière blanche et projection de mesures sur la surface corticale

    Get PDF
    L'étude de l'architecture et de la connectivité structurelle du cerveau est possible grâce à l'imagerie par résonance magnétique de diffusion (IRMd). Ce type d’image, similaire à un champ vectoriel tridimensionnel, combiné à un algorithme nommé tractographie, permet d’inférer la distribution des fibres de matière blanche et ainsi de reconstruire la structure locale du tissu. Or, cette méthode demeure limitée par une basse résolution et un faible rapport signal sur bruit. Afin de contourner ces limitations, des modèles géométriques construits à partir d’aprioris anatomiques sont utilisés. Cette thèse montre que des règles et des contraintes basées sur la modélisation corticale peuvent être intégrées à la tractographie par le biais d’équations de géométrie différentielle. En effet, la structure axonale sous-jacente à la matière grise peut être approximée avec l'utilisation de la surface et d'un flot de courbure moyenne. Pondéré par l’information de densité, ce flot permet d’obtenir une meilleure représentation des projections des fibres de matière blanche sous le cortex. D'ailleurs, le fait d’incorporer la surface corticale, obtenue d’une image anatomique haute résolution, à l’IRMd permet d'augmenter la précision de la tractographie. Puisque l'acquisition d'une image anatomique (pondération T1) est toujours faite lors d'une IRMd, la combinaison des deux est une façon simple et peu coûteuse d'améliorer cette technique de reconstruction. Par ailleurs, discrétiser les surfaces corticales à l'aide de maillages, plutôt qu’avec des masques voxeliques, permet non seulement d'augmenter la précision de l'interface, mais d'intégrer facilement de nouveaux aprioris et de mieux choisir la répartition des positions initiales. L'ajout d'aprioris et de modèles géométriques permet de mieux modéliser près du cortex et ainsi connecter jusqu'aux surfaces corticales. Cette connexion rend possible la projection de mesures de la matière blanche le long du cortex, un domaine également utilisé pour plusieurs analyses anatomiques (ex. épaisseur corticale), magnéto-/électro-encéphalographie (MEG/EEG) et IRM fonctionnelle (IRMf). L'intégration de ces surfaces corticales à la tractographie a un impact important pour les recherches multimodales sur la connectivité cérébrale
    • …
    corecore