33,004 research outputs found

    Automated Pneumothorax Diagnosis using Deep Neural Networks

    Get PDF
    Thoracic ultrasound can provide information leading to rapid diagnosis of pneumothorax with improved accuracy over the standard physical examination and with higher sensitivity than anteroposterior chest radiography. However, the clinical We have Furthermore, remote environments, such as the battlefield or deep-space exploration, may lack expertise for diagnosing developed an automated image interpretation pipeline for the analysis of thoracic ultrasound data and the classification of pneumothorax events to provide decision support in such situations. Our pipeline consists of image preprocessing, data augmentation, and deep learning architectures for medical diagnosis. In this work, we demonstrate that robust, accurate interpretation of chest images and video can be achieved using deep neural networks. A number of novel image processing techniques were employed to achieve this result. Affine transformations were applied for data augmentation. Hyperparameters were optimized for learning rate, dropout regularization, batch size, and epoch iteration by a sequential model-based Bayesian approach. In addition, we utilized pretrained architecturesinterpretation of a patient medical image is highly operator dependent. certain pathologies., applying transfer learning and fine-tuning techniques to fully connected layers. Our pipeline yielded binary classification validation accuracies of 98.3% for M-mode images and 99.8% with B-mode video frames

    Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation

    Full text link
    The electrocardiogram (ECG) is one of the most extensively employed signals used in the diagnosis and prediction of cardiovascular diseases (CVDs). The ECG signals can capture the heart's rhythmic irregularities, commonly known as arrhythmias. A careful study of ECG signals is crucial for precise diagnoses of patients' acute and chronic heart conditions. In this study, we propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes; namely, normal beat, premature ventricular contraction beat, paced beat, right bundle branch block beat, left bundle branch block beat, atrial premature contraction beat, ventricular flutter wave beat, and ventricular escape beat. The one-dimensional ECG time series signals are transformed into 2-D spectrograms through short-time Fourier transform. The 2-D CNN model consisting of four convolutional layers and four pooling layers is designed for extracting robust features from the input spectrograms. Our proposed methodology is evaluated on a publicly available MIT-BIH arrhythmia dataset. We achieved a state-of-the-art average classification accuracy of 99.11\%, which is better than those of recently reported results in classifying similar types of arrhythmias. The performance is significant in other indices as well, including sensitivity and specificity, which indicates the success of the proposed method.Comment: 14 pages, 5 figures, accepted for future publication in Remote Sensing MDPI Journa

    A Heuristic Neural Network Structure Relying on Fuzzy Logic for Images Scoring

    Get PDF
    Traditional deep learning methods are sub-optimal in classifying ambiguity features, which often arise in noisy and hard to predict categories, especially, to distinguish semantic scoring. Semantic scoring, depending on semantic logic to implement evaluation, inevitably contains fuzzy description and misses some concepts, for example, the ambiguous relationship between normal and probably normal always presents unclear boundaries (normal − more likely normal - probably normal). Thus, human error is common when annotating images. Differing from existing methods that focus on modifying kernel structure of neural networks, this study proposes a dominant fuzzy fully connected layer (FFCL) for Breast Imaging Reporting and Data System (BI-RADS) scoring and validates the universality of this proposed structure. This proposed model aims to develop complementary properties of scoring for semantic paradigms, while constructing fuzzy rules based on analyzing human thought patterns, and to particularly reduce the influence of semantic conglutination. Specifically, this semantic-sensitive defuzzier layer projects features occupied by relative categories into semantic space, and a fuzzy decoder modifies probabilities of the last output layer referring to the global trend. Moreover, the ambiguous semantic space between two relative categories shrinks during the learning phases, as the positive and negative growth trends of one category appearing among its relatives were considered. We first used the Euclidean Distance (ED) to zoom in the distance between the real scores and the predicted scores, and then employed two sample t test method to evidence the advantage of the FFCL architecture. Extensive experimental results performed on the CBIS-DDSM dataset show that our FFCL structure can achieve superior performances for both triple and multiclass classification in BI-RADS scoring, outperforming the state-of-the-art methods

    Skin Lesion Analyser: An Efficient Seven-Way Multi-Class Skin Cancer Classification Using MobileNet

    Full text link
    Skin cancer, a major form of cancer, is a critical public health problem with 123,000 newly diagnosed melanoma cases and between 2 and 3 million non-melanoma cases worldwide each year. The leading cause of skin cancer is high exposure of skin cells to UV radiation, which can damage the DNA inside skin cells leading to uncontrolled growth of skin cells. Skin cancer is primarily diagnosed visually employing clinical screening, a biopsy, dermoscopic analysis, and histopathological examination. It has been demonstrated that the dermoscopic analysis in the hands of inexperienced dermatologists may cause a reduction in diagnostic accuracy. Early detection and screening of skin cancer have the potential to reduce mortality and morbidity. Previous studies have shown Deep Learning ability to perform better than human experts in several visual recognition tasks. In this paper, we propose an efficient seven-way automated multi-class skin cancer classification system having performance comparable with expert dermatologists. We used a pretrained MobileNet model to train over HAM10000 dataset using transfer learning. The model classifies skin lesion image with a categorical accuracy of 83.1 percent, top2 accuracy of 91.36 percent and top3 accuracy of 95.34 percent. The weighted average of precision, recall, and f1-score were found to be 0.89, 0.83, and 0.83 respectively. The model has been deployed as a web application for public use at (https://saketchaturvedi.github.io). This fast, expansible method holds the potential for substantial clinical impact, including broadening the scope of primary care practice and augmenting clinical decision-making for dermatology specialists.Comment: This is a pre-copyedited version of a contribution published in Advances in Intelligent Systems and Computing, Hassanien A., Bhatnagar R., Darwish A. (eds) published by Chaturvedi S.S., Gupta K., Prasad P.S. The definitive authentication version is available online via https://doi.org/10.1007/978-981-15-3383-9_1
    • …
    corecore