557 research outputs found

    Towards End-to-End Acoustic Localization using Deep Learning: from Audio Signal to Source Position Coordinates

    Full text link
    This paper presents a novel approach for indoor acoustic source localization using microphone arrays and based on a Convolutional Neural Network (CNN). The proposed solution is, to the best of our knowledge, the first published work in which the CNN is designed to directly estimate the three dimensional position of an acoustic source, using the raw audio signal as the input information avoiding the use of hand crafted audio features. Given the limited amount of available localization data, we propose in this paper a training strategy based on two steps. We first train our network using semi-synthetic data, generated from close talk speech recordings, and where we simulate the time delays and distortion suffered in the signal that propagates from the source to the array of microphones. We then fine tune this network using a small amount of real data. Our experimental results show that this strategy is able to produce networks that significantly improve existing localization methods based on \textit{SRP-PHAT} strategies. In addition, our experiments show that our CNN method exhibits better resistance against varying gender of the speaker and different window sizes compared with the other methods.Comment: 18 pages, 3 figures, 8 table

    Exploiting Deep Neural Networks and Head Movements for Robust Binaural Localisation of Multiple Sources in Reverberant Environments

    Get PDF
    This paper presents a novel machine-hearing system that exploits deep neural networks (DNNs) and head movements for robust binaural localisation of multiple sources in reverberant environments. DNNs are used to learn the relationship between the source azimuth and binaural cues, consisting of the complete cross-correlation function (CCF) and interaural level differences (ILDs). In contrast to many previous binaural hearing systems, the proposed approach is not restricted to localisation of sound sources in the frontal hemifield. Due to the similarity of binaural cues in the frontal and rear hemifields, front-back confusions often occur. To address this, a head movement strategy is incorporated in the localisation model to help reduce the front-back errors. The proposed DNN system is compared to a Gaussian mixture model (GMM) based system that employs interaural time differences (ITDs) and ILDs as localisation features. Our experiments show that the DNN is able to exploit information in the CCF that is not available in the ITD cue, which together with head movements substantially improves localisation accuracies under challenging acoustic scenarios in which multiple talkers and room reverberation are present
    • …
    corecore