3,165 research outputs found

    An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting Using Deep Learning

    Full text link
    For short-term solar irradiance forecasting, the traditional point forecasting methods are rendered less useful due to the non-stationary characteristic of solar power. The amount of operating reserves required to maintain reliable operation of the electric grid rises due to the variability of solar energy. The higher the uncertainty in the generation, the greater the operating-reserve requirements, which translates to an increased cost of operation. In this research work, we propose a unified architecture for multi-time-scale predictions for intra-day solar irradiance forecasting using recurrent neural networks (RNN) and long-short-term memory networks (LSTMs). This paper also lays out a framework for extending this modeling approach to intra-hour forecasting horizons thus, making it a multi-time-horizon forecasting approach, capable of predicting intra-hour as well as intra-day solar irradiance. We develop an end-to-end pipeline to effectuate the proposed architecture. The performance of the prediction model is tested and validated by the methodical implementation. The robustness of the approach is demonstrated with case studies conducted for geographically scattered sites across the United States. The predictions demonstrate that our proposed unified architecture-based approach is effective for multi-time-scale solar forecasts and achieves a lower root-mean-square prediction error when benchmarked against the best-performing methods documented in the literature that use separate models for each time-scale during the day. Our proposed method results in a 71.5% reduction in the mean RMSE averaged across all the test sites compared to the ML-based best-performing method reported in the literature. Additionally, the proposed method enables multi-time-horizon forecasts with real-time inputs, which have a significant potential for practical industry applications in the evolving grid.Comment: 19 pages, 12 figures, 3 tables, under review for journal submissio

    Robust 24 Hours ahead Forecast in a Microgrid: A Real Case Study

    Get PDF
    Forecasting the power production from renewable energy sources (RESs) has become fundamental in microgrid applications to optimize scheduling and dispatching of the available assets. In this article, a methodology to provide the 24 h ahead Photovoltaic (PV) power forecast based on a Physical Hybrid Artificial Neural Network (PHANN) for microgrids is presented. The goal of this paper is to provide a robust methodology to forecast 24 h in advance the PV power production in a microgrid, addressing the specific criticalities of this environment. The proposed approach has to validate measured data properly, through an effective algorithm and further refine the power forecast when newer data are available. The procedure is fully implemented in a facility of the Multi-Good Microgrid Laboratory (MG(Lab)(2)) of the Politecnico di Milano, Milan, Italy, where new Energy Management Systems (EMSs) are studied. Reported results validate the proposed approach as a robust and accurate procedure for microgrid applications

    Solar Irradiance Forecasting Using Dynamic Ensemble Selection

    Get PDF
    Solar irradiance forecasting has been an essential topic in renewable energy generation. Forecasting is an important task because it can improve the planning and operation of photovoltaic systems, resulting in economic advantages. Traditionally, single models are employed in this task. However, issues regarding the selection of an inappropriate model, misspecification, or the presence of random fluctuations in the solar irradiance series can result in this approach underperforming. This paper proposes a heterogeneous ensemble dynamic selection model, named HetDS, to forecast solar irradiance. For each unseen test pattern, HetDS chooses the most suitable forecasting model based on a pool of seven well-known literature methods: ARIMA, support vector regression (SVR), multilayer perceptron neural network (MLP), extreme learning machine (ELM), deep belief network (DBN), random forest (RF), and gradient boosting (GB). The experimental evaluation was performed with four data sets of hourly solar irradiance measurements in Brazil. The proposed model attained an overall accuracy that is superior to the single models in terms of five well-known error metrics

    Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control

    Get PDF
    In recent years, the photovoltaic generation installed capacity has been steadily growing thanks to its inexhaustible and non-polluting characteristics. However, solar generators are strongly dependent on intermittent weather parameters, increasing power systems' uncertainty level. Forecasting models have arisen as a feasible solution to decreasing photovoltaic generators' uncertainty level, as they can produce accurate predictions. Traditionally, the vast majority of research studies have focused on the develop- ment of accurate prediction point forecasters. However, in recent years some researchers have suggested the concept of prediction interval forecasting, where not only an accurate prediction point but also the confidence level of a given prediction are computed to provide further information. This paper develops a new model for predicting photovoltaic generators' output power confidence interval 10 min ahead, based on deep learning, mathematical probability density functions and meteorological parameters. The model's accuracy has been validated with a real data series collected from Spanish meteorological sta- tions. In addition, two error metrics, prediction interval coverage percentage and Skill score, are computed at a 95% confidence level to examine the model's accuracy. The prediction interval coverage percentage values are greater than the chosen confidence level, which means, as stated in the literature, the proposed model is well-founded

    Alternative Sources of Energy Modeling, Automation, Optimal Planning and Operation

    Get PDF
    An economic development model analyzes the adoption of alternative strategy capable of leveraging the economy, based essentially on RES. The combination of wind turbine, PV installation with new technology battery energy storage, DSM network and RES forecasting algorithms maximizes RES integration in isolated islands. An innovative model of power system (PS) imbalances is presented, which aims to capture various features of the stochastic behavior of imbalances and to reduce in average reserve requirements and PS risk. Deep learning techniques for medium-term wind speed and solar irradiance forecasting are presented, using for first time a specific cloud index. Scalability-replicability of the FLEXITRANSTORE technology innovations integrates hardware-software solutions in all areas of the transmission system and the wholesale markets, promoting increased RES. A deep learning and GIS approach are combined for the optimal positioning of wave energy converters. An innovative methodology to hybridize battery-based energy storage using supercapacitors for smoother power profile, a new control scheme and battery degradation mechanism and their economic viability are presented. An innovative module-level photovoltaic (PV) architecture in parallel configuration is introduced maximizing power extraction under partial shading. A new method for detecting demagnetization faults in axial flux permanent magnet synchronous wind generators is presented. The stochastic operating temperature (OT) optimization integrated with Markov Chain simulation ascertains a more accurate OT for guiding the coal gasification practice

    Short-term forecasting photovoltaic solar power for home energy management systems

    Get PDF
    Accurate photovoltaic (PV) power forecasting is crucial to achieving massive PV integration in several areas, which is needed to successfully reduce or eliminate carbon dioxide from energy sources. This paper deals with short-term multi-step PV power forecasts used in model-based predictive control for home energy management systems. By employing radial basis function (RBFs) artificial neural networks (ANN), designed using a multi-objective genetic algorithm (MOGA) with data selected by an approximate convex-hull algorithm, it is shown that excellent forecasting results can be obtained. Two case studies are used: a special house located in the USA, and the other a typical residential house situated in the south of Portugal. In the latter case, one-step-ahead values for unscaled root mean square error (RMSE), mean relative error (MRE), normalized mean average error (NMAE), mean absolute percentage error (MAPE) and R2 of 0.16, 1.27%, 1.22%, 8% and 0.94 were obtained, respectively. These results compare very favorably with existing alternatives found in the literature.Programa Operacional Portugal 2020 and Operational Program CRESC Algarve 2020 grant 01/SAICT/2018. Antonio Ruano acknowledges the support of Fundação para a Ciência e Tecnologia, through IDMEC, under LAETA, grant UIDB/50022/2020.info:eu-repo/semantics/publishedVersio
    • …
    corecore