746 research outputs found

    Deep learning applications in non-intrusive load monitoring

    Get PDF
    Non-Intrusive Load Monitoring (NILM) is a technique for inferring the power consumption of each appliance within a home from one central meter, aiding in energy conservation. In this thesis I present several Deep Learning solutions for NILM, starting with two preliminary works – A proof of concept project for multisensory NILM on a Raspberry Pi; and a fully developed NILM solution named WaveNILM. Despite their success, both methods struggled to generalize outside their training data, a common problem in NILM. To improve generalization, I designed a framework for synthesizing truly novel appliance level power signatures based on generative adversarial networks (GAN) – the main project of this thesis. This generator, named PowerGAN, is trained using a variety of GAN techniques. I present a comparison of PowerGAN to other data synthesis work in the context of NILM and demonstrate that PowerGAN is able to create truly synthetic, realistic, diverse, appliance power signatures

    Long-Term Hourly Scenario Generation for Correlated Wind and Solar Power combining Variational Autoencoders with Radial Basis Function Kernels

    Full text link
    Accurate generation of realistic future scenarios of renewable energy generation is crucial for long-term planning and operation of electrical systems, especially considering the increasing focus on sustainable energy and the growing penetration of renewable generation in energy matrices. These predictions enable power system operators and energy planners to effectively manage the variability and intermittency associated with renewable generation, allowing for better grid stability, improved energy management, and enhanced decision-making processes. In this paper, we propose an innovative method for generating long-term hourly scenarios for wind and solar power generation, taking into consideration the correlation between these two energy sources. To achieve this, we combine the capabilities of a Variational Autoencoder (VAE) with the additional benefits of incorporating the Radial Basis Function (RBF) kernel in our artificial neural network architecture. By incorporating them, we aim to obtain a latent space with improved regularization properties. To evaluate the effectiveness of our proposed method, we conduct experiments in a representative study scenario, utilizing real-world wind and solar power generation data from the Brazil system. We compare the scenarios generated by our model with the observed data and with other sets of scenarios produced by a conventional VAE architecture. Our experimental results demonstrate that the proposed method can generate long-term hourly scenarios for wind and solar power generation that are highly correlated, accurately capturing the temporal and spatial characteristics of these energy sources. Taking advantage of the benefits of RBF in obtaining a well-regularized latent space, our approach offers improved accuracy and robustness in generating long-term hourly scenarios for renewable energy generation

    Scale- and Context-Aware Convolutional Non-intrusive Load Monitoring

    Full text link
    Non-intrusive load monitoring addresses the challenging task of decomposing the aggregate signal of a household's electricity consumption into appliance-level data without installing dedicated meters. By detecting load malfunction and recommending energy reduction programs, cost-effective non-intrusive load monitoring provides intelligent demand-side management for utilities and end users. In this paper, we boost the accuracy of energy disaggregation with a novel neural network structure named scale- and context-aware network, which exploits multi-scale features and contextual information. Specifically, we develop a multi-branch architecture with multiple receptive field sizes and branch-wise gates that connect the branches in the sub-networks. We build a self-attention module to facilitate the integration of global context, and we incorporate an adversarial loss and on-state augmentation to further improve the model's performance. Extensive simulation results tested on open datasets corroborate the merits of the proposed approach, which significantly outperforms state-of-the-art methods.Comment: Accepted by IEEE Transactions on Power System

    Non-parametric modeling in non-intrusive load monitoring

    Get PDF
    Non-intrusive Load Monitoring (NILM) is an approach to the increasingly important task of residential energy analytics. Transparency of energy resources and consumption habits presents opportunities and benefits at all ends of the energy supply-chain, including the end-user. At present, there is no feasible infrastructure available to monitor individual appliances at a large scale. The goal of NILM is to provide appliance monitoring using only the available aggregate data, side-stepping the need for expensive and intrusive monitoring equipment. The present work showcases two self-contained, fully unsupervised NILM solutions: the first featuring non-parametric mixture models, and the second featuring non-parametric factorial Hidden Markov Models with explicit duration distributions. The present implementation makes use of traditional and novel constraints during inference, showing marked improvement in disaggregation accuracy with very little effect on computational cost, relative to the motivating work. To constitute a complete unsupervised solution, labels are applied to the inferred components using a Res-Net-based deep learning architecture. Although this preliminary approach to labelling proves less than satisfactory, it is well-founded and several opportunities for improvement are discussed. Both methods, along with the labelling network, make use of block-filtered data: a steady-state representation that removes transient behaviour and signal noise. A novel filter to achieve this steady-state representation that is both fast and reliable is developed and discussed at length. Finally, an approach to monitor the aggregate for novel events during deployment is developed under the framework of Bayesian surprise. The same non-parametric modelling can be leveraged to examine how the predictive and transitional distributions change given new windows of observations. This framework is also shown to have potential elsewhere, such as in regularizing models against over-fitting, which is an important problem in existing supervised NILM
    • …
    corecore